Study of Fibrinolytic Enzymes on Microorganisms of Fermented Food From Asia: Review

Fathma Syahbanu, Setyaning Pawestri

Abstract

Data collected by WHO in 2019 shows an estimated 17.9 million (equivalent to 32% of global death). The total number is due to cardiovascular disease, 85% were due to heart attacks and strokes. One of the basic pathophysiologies of stroke is atero-thromboembolic (thrombosis). The accumulation of clots formed by fibrin in blood vessels can inhibit several processes in the body system, such as blood flow, oxygen transportation, and transportation of nutritional and non-nutritional compounds needed. Fibrinolytic enzymes from food microbes have attracted attention for further research as thrombolytic agents. The Bacillus genus from fermented foods can produce strong fibrinolytic enzymes, such as Bacillus natto from natto (Japan), Bacillus subtilis KCK-7 from Chungkook-jang (Korea), Bacillus weihenstephanensis from shrimp paste (Vietnam), Bacillus amyloliquefaciens MH18B1 from Hawaijar (India), Rhizopus chinensis 12 from Chinese wine (China), and Bacillus pumillus and Bacillus subtilis K2 from fermented soybean food products such as tempe gembus, red oncom, and moromi (Indonesia). The high protein content in soybeans can be used as a medium for the growth of proteolytic and fibrinolytic microorganisms. Studies in Asia regarding fibrinolytic enzymes from fermented foods are still limited, even though the Asian region comprises many countries rich in fermented foods. This review is relevant to healthy food ingredients from local fermented foods. Recently, microbial fibrinolytic enzymes from fermented foods have received tremendous interest in the medical field. Many local fermented foods are a potential source of fibrin-degrading enzymes, which can be further developed to treat diseases like stroke and heart attack. This article aims to review microbial fibrinolytic enzymes from various fermented foods and their impact on health, especially thrombosis. This manuscript review uses the narrative review method. From the overall discussion, it can be concluded that fermented foods have properties as fibrinolytic agents.

Keywords

Bacillus sp.; fibrinolytics; fermented food; thrombosis

References

[WHO] World Health Organization. (2021). Cardiovascular diseases (CVDs), 2022. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds). [11 Januari 2023].

Abusham, R.A.K., Masomian, M., Salleh, A.B., Leow, A.T.C., Abd Rahman, R.N.Z.R. (2019). An in-Silico Approach to Understanding the Structure-Function: A Molecular Dynamics Simulation Study of Rand Serine Protease Properties from Bacillus subtilis in Aqueous Solvents. Adv. Biotechnol. Microbiol. 12(1):009–0017.doi:10.19080/aibm.2019.12.555834.

Afifah, D.N., Sulchan, M., Syah, D., Yanti, Suhartono, M.T. (2014). Isolation and identification of fibrinolytic protease-producing microorganisms from Red Oncom and Gembus, Indonesian fermented soybean cakes. Malays. J. Microbiol. 10(4):273–279.doi:10.21161/mjm.61914.

Afifah, D.N., Sulchan, M., Syah, D., Yanti, Suhartono, M.T., Kim, J.H. (2014). Purification and characterization of a fibrinolytic enzyme from Bacillus pumilus 2.g isolated from gembus, an Indonesian fermented food. Prev. Nutr. Food Sci. 19(3):213–219.doi:10.3746/pnf.2014.19.3.213.

Agrebi, R., Haddar, A., Hajji, M., Frikha, F., Manni, L., Nasri, M. (2009). Fibrinolytic enzymes from a newly isolated marine bacterium Bacillus subtilis A26 : characterization and statistical media optimization. Can. J. Microbiol. 55:1049–1061.doi:10.1139/W09-057.

Agrebi, R., Haddar, A., Hmidet, N., Jellouli, K., Manni, L., Nasri, M. (2009). BSF1 fibrinolytic enzyme from a marine bacterium Bacillus subtilis A26: Purification, biochemical and molecular characterization. Process Biochem. 44(11):1252–1259.doi:10.1016/j.procbio.2009.06.024.

Ahn, M., Ku, H., Lee, S., Lee, J. (2015). Characterization of a novel fibrinolytic enzyme, bsfa, from Bacillus subtilis ZA 400 in kimchi reveals its pertinence to thrombosis treatment. J. Microbiol. Biotechnol. 25(12):2090–2099.doi:10.4014/jmb.1509.09048.

Amin, K., Zeng, X., You, Y., Hu, Y., Sun, H., Lyu, B., Piao, C. and Yu, H., 2020. Enhanced thermostability and antioxidant activity of Nattokinase by biogenic enrichment of selenium. Journal of Food Measurement and Characterization, 14(4): 2145-2154.

Anh, D.B.Q., Mi, N.T.T., Huy, D.N.A., Hung, P.Van. (2015). Isolation and Optimization of Growth Condition of Bacillus sp . from Fermented Shrimp Paste for High Fibrinolytic Enzyme Production. Arab. J. Sci. Eng. 40:23–28.doi:10.1007/s13369-014-1506-8.

Arai, K., Mimuro, J., Madoiwa, S., Matsuda, M., Sako, T., Sakata, Y. (1995). Effect of staphylokinase concentration of plasminogen activation. Biochim. Biophys. Acta. 1245:69–75.doi:10.1016/0304-4165(95)00064-i.

Araki, R., Fujie, K., Yuine, N., Watabe, Y., Maruo, K., Suzuki, H. and Hashimoto, K., 2020. The possibility of suppression of increased postprandial blood glucose levels by gamma-polyglutamic acid-rich natto in the early phase after eating: a randomized crossover pilot study. Nutrients, 12(4): 915.

Ariëns, R.A.S. (2013). Fibrinogen) and thrombotic disease. J. Thromb. Haemost. 11(SUPPL.1):294–305.doi:10.1111/jth.12229.

Astrup, T., Miillertz, S. (1952). The Fibrin Plate Method for Estimating Fibrinolytic Activity. Arch. Biochem. Biophys. 40:346–351.doi:10.1016/0003-9861(52)90121-5.

Atmakusuma, T.D., Tambunan, K.L., Sukrisman, L., Effendi, S., Rachman, A., Setiawati, A., Rinaldi, I., Mulansari, N.A., Rajabto, W., Nasution, S.A, et al. (2015). Underutilization of anticoagulant for venous thromboembolism prophylaxis in three hospitals in Jakarta. Acta Med. Indones. 47(2):136–145.

Balaraman, K., Prabakaran, G. (2007). Production & purification of a fibrinolytic enzyme (thrombinase ) from Bacillus sphaericus. Indian J. Med. Res. 126:459–464.

Bornikova, L., Peyvandi, F., Allen, G., Bernstein, J., Manco-Johnson, M.J. (2011). Fibrinogen replacement therapy for congenital fibrinogen deficiency. J. Thromb. Haemost. 9(9):1687–1704.doi:10.1111/j.1538-7836.2011.04424.x.

Cesarman-Maus, G., Hajjar, K.A. (2005). Molecular mechanisms of fibrinolysis. Br. J. Haematol. 129(3):307–321.doi:10.1111/j.1365-2141.2005.05444.x.

Chakraborty, N., Besra, A., Basak, J. (2020). Molecular Cloning of an Amino Acid Permease Gene and Structural Characterization of the Protein in Common Bean (Phaseolus vulgaris L .). Mol. Biotechnol.(0123456789).doi:10.1007/s12033-020-00240-4.

Chang, C., Fan, M., Kuo, F., Sung, H. (2000). Potent Fibrinolytic Enzyme from a Mutant of Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 48(8):3210–3216.doi:10.1021/jf000020k.

Chang, C.T., Wang, P.M., Hung, Y.F., Chung, Y.C. (2012). Purification and biochemical properties of a fibrinolytic enzyme from Bacillus subtilis-fermented red bean. Food Chem. 133(4):1611–1617.doi:10.1016/j.foodchem.2012.02.061.

Chen, H.M., Guan, A.L, Marklands, F.S. (1991). Immunological properties of the fibrinolytic enzyme (fibrolase) from southern copperhead (Agkistrodon contortrix contortrix) venom and its purification by immunoaffinity chromatography. Toxicon. 29(6):683–694.doi:10.1016/0041-0101(91)90060-5.

Chen, H., McGowan, E.M., Ren, N., Lal, S., Nassif, N., Shad-Kaneez, F., Qu, X. and Lin, Y., 2018. Nattokinase: a promising alternative in prevention and treatment of cardiovascular diseases. Biomarker insights, 13, p.1177271918785130.

Cho, I.H., Choi, E.S., Lee, H.H. (2004). Molecular cloning, sequencing, and expression of a fibrinolytic serine-protease gene from the earthworm Lumbricus rubellus. J. Biochem. Mol. Biol. 37(5):574–581.doi:10.5483/bmbrep.2004.37.5.574.

Cho, I.H., Choi, E.S., Lim, H.G., Lee, H.H. (2004). Purification and Characterization of Six Fibrinolytic Serine-Proteases from Earthworm Lumbricus rubellus. J. Biochem. Mol. Biol. 37(2):199–205.doi:10.5483/bmbrep.2004.37.2.199.

Choi, N.S., Ki-Hyun, Y., Hahm, J.H., Yoon, K.S., Chang, K.T., Hyun, B.H., Pil, J.M., Kim S,H. (2005). Purification and characterization of a new peptidase, bacillopeptidase DJ-2, having fibrinolytic activity: produced by Bacillus sp. DJ 2 from Doen-Jang. J. Microbiol. Biotechnol. 15(1):72–79.

Choi, N.S., Song, J.J., Chung, D.M., Kim, Y.J., Maeng, P.J., Kim, S.H. (2009). Purification and characterization of a novel thermoacid-stable fibrinolytic enzyme from Staphylococcus sp. strain AJ isolated from Korean salt-fermented Anchovy-joet. J. Ind. Microbiol. Biotechnol. 36(3):417–426.doi:10.1007/s10295-008-0512-9.

Collen, D., Lijnen, H.R. (2004). Tissue-type plasminogen activator : a historical perspective and personal account. J. Thromb. Haemost. 2(4):541–546.doi:10.1111/j.1538-7933.2004.00645.x.

La Corte, A.L.C., Philippou, H., Arins, R.A.S. (2011). Role of fibrin structure in thrombosis and vascular disease. Ed ke-1 Volume ke-83. Elsevier Inc.

Dabbagh, F., Negahdaripour, M., Berenjian, A., Behfar, A., Mohammadi, F., Zamani, M., Irajie, C., Ghasemi, Y. (2014). Nattokinase: production and application. Appl. Microbiol. Biotechnol. 98(22):9199–9206.doi:10.1007/s00253-014-6135-3.

Delange, R.J., Smith, E.L. (1968). Subtilisin Carlsberg : Amino acid composition, isolation, and composition of peptides from the tryptic hydrolysate. J. Biol. Chem. 243(9):2134–2143.

DeLano WL. 2002. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr. 40:82–92.

Duc, L.H., Hong, H.A., Barbosa, T.M., Adriano, O., Cutting, S.M. (2004). Characterization of Bacillus Probiotics Available for Human Use. Appl. Environ. Microbiol. 70(4):2161–2171.doi:10.1128/AEM.70.4.2161.

Duffy, M.J. (2002). Urokinase Plasminogen Activator and Its Inhibitor, PAI-1, as Prognostic Markers in Breast Cancer : From Pilot to Level 1 Evidence Studies. Clin. Chem. 48(8):1194–1197.

Escobar, C. (2002). Ioteknologi & iosains. Dalam Harmening DM (ed). Clinical Hematology and Fundamentals of Hemostasis. Ed ke-4. FA Davis, Philadelphia (US).

Fadl, N.N., Ahmed, H.H., Booles, H.F. and Sayed, A.H., 2013. Serrapeptase and nattokinase intervention for relieving Alzheimer’s disease pathophysiology in rat model. Human & experimental toxicology, 32(7): 721-735.

Fan, Q., Wu, C., Li, L., Fan, R., Wu, C., Hou, Q., He, R. (2001). Some features of intestinal absorption of intact fibrinolytic enzyme III-1 from Lumbricus rubellus. Biochim. Biophys. Acta - Gen. Subj. 1526(3):286–292.doi:10.1016/S0304-4165(01)00140-4.

Fujita, M., Hong, K., Ito, Y., Misawa, S., Takeuchi, N., Kariya, K., Nishimuro, S. (1995). Transport of nattokinase across the rat intestinal tract. Biol. Pharm. Bull. 18(9):1194–1196.doi:10.1248/bpb.18.1194.

Fujita, M., Ito, Y., Hong, K., Nishimuro, S. (1995). Characterization of nattokinase-degraded products from human fibrinogen or cross-linked fibrin. Fibrinolysis and Proteolysis. 9(3):157–164.doi:10.1016/S0268-9499(95)80005-0.

Fujita, M., Nomura, K., Hong, K., Ito, Y., Asada, A., Nishimuro, S. (1993). Purification and characterization of a strong fibrinolytic enzyme (Nattokinase) in the vegetable cheese Natto, a popular soybean fermented food in Japan. Biochem. Biophys. Res. Commun. 197(3):1340–1347.doi:10.1006/bbrc.1993.2624.

Fuka, M.M., Engel, M., Haesler, F., Welzl, G., Munch, J.C., Schloter, M. (2008). Diversity of proteolytic community encoding for subtilisin in an arable field: Spatial and temporal variability. Biol. Fertil. Soils. 45(2):185–191.doi:10.1007/s00374-008-0319-x.

Furlan, M. (1988). Structure of fibrinogen and fibrin. Dalam J. L. Francis (ed.) in Fibrinogen, Fibrin Stabilization, and Fibrinolysis: Clinical, Biochemical and Laboratory Aspects. Ed ke-4 hlm. 17–64. Ellis Horwood, Ltd., New York, USA.

Gad, R.G. (2014). Fibrinolytic enzyme from Bacillus amyloliquefaciens: optimisation and scale up studies. Int. J. Pharm. Pharm. Sci. 6(10):370–378.

Gardner, M.L.G. (1988). Gastrointestinal absorption of intact proteins. Annu. Rev. Nutr. 8:329–350.doi:10.1146/annurev.nu.08.070188.001553.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A. (2005). Protein Identification and Analysis Tools on the ExPASy Server. Dalam Walk JM (ed.) in The Proteomics Protocols Handbook. hlm. 571–608. Humana Press Inc., Totowa, NJ.

Geer, L.Y., Domrachev, M., Lipman, D.J., Bryant, S.H. (2002). CDART: Protein homology by domain architecture. Genome Res. 12(10):1619–1623.doi:10.1101/gr.278202.

Gholami, A., Shahin, S., Mohkam, M., Nezafat, N., Ghasemi, Y. (2015). Cloning, Characterization and Bioinformatics Analysis of Novel Cytosine Deaminase from Escherichia coli AGH09. Int. J. Pept. Res. Ther. 21(3):365–374.doi:10.1007/s10989-015-9465-9.

Głowacka, A.E., Podstawka, E., Szczȩsna-Antczak, M.H., Kalinowska, H., Antczak, T. (2005). Kinetic and molecular properties of Bacillus subtilis IBTC-3 subtilisin. Comp. Biochem. Physiol. - B Biochem. Mol. Biol. 140(2):321–331.doi:10.1016/j.cbpc.2004.10.015.

Hassanein, W., Kotb, E., Awny, N., El-Zawahry, Y. (2011). Fibrinolysis and anticoagulant potential of a metallo protease produced by Bacillus subtilis K42. J. Biosci. 36:773–779.doi:10.1007/s12038-011-9151-9.

Hill, M., Dolan, G. (2008). Diagnosis, clinical features and molecular assessment of the dysfibrinogenaemias. Haemophilia. 14(5):889–897.doi:10.1111/j.1365-2516.2008.01795.x.

Huy, D., Hao, P., Hung, P. (2016). Screening and identification of Bacillus sp. isolated from traditional Vietnamese soybean-fermented products for high fibrinolytic enzyme production. 23(1):326–331.

Hwang, K.J., Choi, K.H., Kim, M.J., Park, C.S., Cha, J. (2007). Purification and characterization of a new fibrinolytic enzyme of Bacillus licheniformis KJ-31, isolated from Korean traditional Jeot-gal. J. Microbiol. Biotechnol. 17(9):1469–1476.

Ismail, D., Harun, S., Alwi, I., Tambunan, K.L., Effendy, S. (2002). Anti-thrombin III, Protein C, and Protein S deficiency in acute coronary syndrome. Med. J. Indones. 11(2):87–92.doi:10.13181/mji.v11i2.54.

Jain, S.C., Shinde, U., Li, Y., Inouye, M., Berman, H.M. (1998). The crystal structure of an autoprocessed Ser221Cys-subtilisin E-propeptide complex at 2.0 Å resolution. J. Mol. Biol. 284(1):137–144.doi:10.1006/jmbi.1998.2161.

Jang, J.S., Kang, D.O., Chun, M.J., Byun, S.M. (1992). Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis. Biochem. Biophys. Res. Commun. 184(1):277–282.doi:10.1016/0006-291X(92)91189-W.

Jeong, S.J., Kwon, G.H., Chun, J., Kim, J.S., Park, C., Kwon, D.A.E.Y., Kim, J.H. (2007). Cloning of Fibrinolytic Enzyme Gene from Isolated from and Its Expression in Protease-deficient Strains. J. Microbiol. Biotechnol. 17(6):1018–1023.

Jeong, S., Heo, K., Park, J., Lee, K., Park, J., Joo, S., Kim, J. (2015). Characterization of AprE176, a Fibrinolytic Enzyme from Bacillus subtilis HK176. J. Microbiol. Biotechnol. 25(1):89–97.doi:dx.doi.org/10.4014/jmb.1409.09087.

Jeong, Y.K., Kim, J.H., Gal, S.W., Kim, J.E., Park, S.S., Chung, K.T., Kim, Y.H., Kim, B.W., Joo, W.H. (2004). Molecular cloning and characterization of the gene encoding a fibrinolytic enzyme from Bacillus subtilis Strain A1. World J. Microbiol. Biotechnol. 20(7):711–717.doi:10.1007/s11274-003-4514-5.

Jo, H.D., Lee, H.A., Jeong, S., Kim, J.H. (2011). Purification and Characterization of a Major Fibrinolytic Enzyme from Bacillus amyloliquefaciens MJ5-41 Isolated from Meju. J. Microbiol. Biotechnol. 21(11):1166–1173.doi:10.4014/jmb.1106.06008.

Jo, H.D., Kwon, G.H., Park, J.Y., Cha, J., Song, Y.S., Kim, J.H. (2011). Cloning and overexpression of aprE3-17 encoding the major fibrinolytic protease of Bacillus licheniformis CH 3-17. Biotechnol. Bioprocess Eng. 16(2):352–359.doi:10.1007/s12257-010-0328-0.

Juan, M., Chou, C. (2010). Enhancement of antioxidant activity , total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiol. 27(5):586–591.doi:10.1016/j.fm.2009.11.002.

Kamiya, S., Hagimori, M., Ogasawara, M., Arakawa, M. (2010). In vivo evaluation method of the effect of nattokinase on carrageenan-induced tail thrombosis in a rat model. Acta Haematol. 124(4):218–224.doi:10.1159/000321518.

Kaptoge, S., Pennells, L., De Bacquer, D., Cooney, M.T., Kavousi, M., Stevens, G., Riley, L.M., Savin, S., Khan, T., Altay, S., et al. (2019). World Health Organization cardiovascular disease risk charts: revised models to estimate risk in 21 global regions. Lancet Glob. Heal. 7(10):e1332–e1345.doi:10.1016/S2214-109X(19)30318-3.

Katzung, B.G. (2018). Basic & Clinical Pharmacology, Fourteenth Edition. Ed ke-14 Katzung BG, editor. New York (US): Mc Graw Hill Education.

Kaur, I., Kocher, G.S., Gupta, V.K. (2012). Molecular Cloning and Nucleotide Sequence of the Gene for an Alkaline Protease from Bacillus circulans MTCC 7906. Indian J. Microbiol. 52(4):630–637.doi:10.1007/s12088-012-0297-4.

Killer, M., Ladurner, G., Kunz, A.B., Kraus, J. (2010). Current endovascular treatment of acute stroke and future aspects. Drug Discov. Today. 15(15):640–647.doi:10.1016/j.drudis.2010.04.007.

Kim, G.M., Lee, A.R., Lee, K.W., Park, J.Y., Chun, J., Cha, J., Song, Y.S., Kim, J.H. (2009). Characterization of a 27 kDa fibrinolytic enzyme from Bacillus amyloliquefaciens CH51 isolated from Cheonggukjang. J. Microbiol. Biotechnol. 19(9):997–1004.doi:10.4014/jmb.0811.600.

Kim, H.K., Kim, G.T., Kim, D.K., Choi, W.A., Park, S.H., Jeong, Y.K., Kong, I.S. (1997). Purification and Characterization of a Novel Fibrinolytic Enzyme from Bacillus sp. KA38 Originated from Fermented Fish. J. Ferment. Bioeng. 84(4):307–312.doi:10.1016/S0922-338X(97)89249-5.

Kim, J.B., Jung, W.H., Ryu, J.M., Lee, Y.J., Jung, J.K., Jang, H.W., Kim, S.W. (2007). Identification of a fibrinolytic enzyme by Bacillus vallismortis and its potential as a bacteriolytic enzyme against Streptococcus mutans. Biotechnol. Lett. 29(4):605–610.doi:10.1007/s10529-006-9284-3.

Kim, S., Choi, N.S. (2000). Purification and characterization of subtilisin DJ-4 secreted by Bacillus sp strain DJ-4 screened from Doen-Jang. Biosci. Biotechnol. Biochem. 64(8):1722–1725.doi:10.1271/bbb.64.1722.

Kim, S., Chun, H., Han, M.H., Park, N., Suk, K. (1997). A Novel Variant Of Staphylokinasegene From Staphylococcus Alirez . Is Atcc 29213. 87(l):387–395.

Kim, S.B., Lee, D.W., Cheigh, C.I., Choe, E.A., Lee, S.J., Hong, Y.H., Choi, H.J., Pyun, Y.R. (2006). Purification and characterization of a fibrinolytic subtilisin-like protease of Bacillus subtilis TP-6 from an Indonesian fermented soybean, Tempeh. J. Ind. Microbiol. Biotechnol. 33(6):436–444.doi:10.1007/s10295-006-0085-4.

Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I., Kim, W., Choi, K., et al. (1996). Purification and characterization of a fibrinolytic enzyme produced from Bacillus sp . strain CK 11-4 screened from Chungkook-Jang . These include : Purification and Characterization of a Fibrinolytic Enzyme Produced from Bacillus sp . strain CK 11-4 Scre.

Kim, W., Choi, K., Kim, Y., Park, H., Choi, J., Lee, Y., Oh, H., Kwon, I., Lee, S. (1996). Purification and Characterization of a Fibrinolytic Enzyme Produced from Bacillus sp . strain CK 11-4 Screened from Chungkook-Jang. Appl. Environ. Microbiol. 62(7):2482–2488.

Ko, J.H., Yan, J.P., Zhu, L., Qi, Y.P. (2004). Identification of two novel fibrinolytic enzymes from Bacillus. Comp. Biochem. Physiol. Part C. 137:65–74.doi:10.1016/j.cca.2003.11.008.

Kotb, E. (2012). Fibrinolytic Bacterial Enzymes with Thrombolytic Activity. Ed ke-1. Berlin: Springer Heidelberg Dordrecht London New York.

Kotb, E. (2014). Purification and partial characterization of a chymotrypsin-like serine fibrinolytic enzyme from Bacillus amyloliquefaciens FCF-11 using corn husk as a novel substrate. World J. Microbiol. Biotechnol. 30:2071–2080.doi:10.1007/s11274-014-1632-1.

Kotb, E. (2015). Purification and partial characterization of serine fibrinolytic enzyme from Bacillus megaterium KSK-07 isolated from kishk, a traditional Egyptian fermented food. Appl. Biochem. Microbiol. 51(1):34–43.doi:10.1134/S000368381501007X.

Kovalevsky, A.Y., Liu, F., Leshchenko, S., Ghosh, A.K., Louis, J.M., Harrison, R.W., Weber, I.T. (2006). Ultra-high Resolution Crystal Structure of HIV-1 Protease Mutant Reveals Two Binding Sites for Clinical Inhibitor TMC114. J. Mol. Biol. 363(1):161–173.doi:10.1016/j.jmb.2006.08.007.

Kuhn, P., Knapp, M., Soltis, S.M., Ganshaw, G., Thoene, M., Bott, R. (1998). The 0.78 Å structure of a serine protease: Bacillus lentus subtilisin. Biochemistry. 37(39):13446–13452.doi:10.1021/bi9813983.

Kumar, S., Tsai, C., Nussinov, R. (2000). Factors enhancing protein thermostability. 13(3):179–191.doi:10.1093/protein/13.3.179.

Kurnia, F., Tjandrawinata, R.R., Yulandi, A., Suhartono, M.T. (2017). Protease of Stenotrophomonas sp. from Indonesian fermented food: gene cloning and analysis. J. Biol. Res. 90(2):70–76.doi:10.4081/jbr.2017.6428.

Kurosawa, Y., Nirengi, S., Homma, T., Esaki, K., Ohta, M., Clark, J.F., Hamaoka, T. (2015). A single-dose of oral nattokinase potentiates thrombolysis and anti-coagulation profiles. Sci. Rep. 5:1–7.doi:10.1038/srep11601.

Kwon, G.H., Park. J.Y., Kim, J.S., Lim, J., Park, C.S., Kwon, D.Y., Kim, J.H. (2011). Cloning and expression of a bpr gene encoding bacillopeptidase F from Bacillus amyloliquefaciens CH86-1. J. Microbiol. Biotechnol. 21(5):515–518.doi:10.4014/jmb.1010.10061.

Kyte, J., Doolittle, R.F. (1982). A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157(1):105–132.doi:10.1016/0022-2836(82)90515-0.

Laskowski, R.A., MacArthur, M.W., Moss, D.S., Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallogr. 26(2):283–291.doi:10.1107/s0021889892009944.

Lee, A.R., Kim, G.M., Kwon, G.H., Lee, K.W., Park, J.Y., Chun, J., Cha, J., Song, Y.S., Kim, J.H. (2010). Cloning of aprE86-1 gene encoding a 27-kDa mature fibrinolytic enzyme from Bacillus amyloliquefaciens CH86-1. J. Microbiol. Biotechnol. 20(2):370–374.doi:10.4014/jmb.0906.06029.

Lee, I.H., Hung, Y.H., Chou, C.C. (2008). Solid-state fermentation with fungi to enhance the antioxidative activity, total phenolic and anthocyanin contents of black bean. Int. J. Food Microbiol. 121(2):150–156.doi:10.1016/j.ijfoodmicro.2007.09.008.

Lee, S.K., Bae, D., Kwon, T., Lee, S.B., Lee, H., Park, J., Heo, S., Johnson, M. (2001). Purification and characterization of a fibrinolytic enzyme from Bacillus sp. KDO-13 isolated from soybean paste. J. Microbiol. Biotechnol. 11(5):845–852.

Lijnen, H. (2001). Elements of the Fibrinolytic System. Ann. N. Y. Acad. Sci. 936(1):226–236.doi:10.1111/j.1749-6632.2001.tb03511.x.

Lijnen, H.R., Van Hoef, B., De Cock, F., Okada, K., Ueshima, S., Matsuo, O., Collen, D. (1991). On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J. Biol. Chem. 266(18):11826–11832.

Lovell, S.C., Davis, I.W., Adrendall, W.B., de Bakker, P.I.W., Word, J.M., Prisant, M.G., Richardson, J.S., Richardson, D.C. (2003). Structure validation by C alpha geometry : Phi, Psi and C beta Deviation. Proteins Struct. Funct. Genet. 50:437–450.doi:10.1002/prot.10286.

Mahajan, P.M., Gokhale, S.V., Lele, S.S. (2010). Production of Nattokinase Using Bacillus natto NRRL 3666: Media optimization, scale Up, and kinetic modeling. Food Sci. Biotechnol. 19(6):1593–1603.doi:10.1007/s10068-010-0226-4.

Maiti, R., Van Domselaar, G.H., Zhang, H., Wishart, D.S. (2004). SuperPose: A simple server for sophisticated structural superposition. Nucleic Acids Res. 32(WEB SERVER ISS.):590–594.doi:10.1093/nar/gkh477.

Marrone, T.J., Briggs, J.M., McCammon, J.A. (1997). Structure-based drug design: Computational advances. Annu. Rev. Pharmacol. Toxicol. 37:71–90.

Medved, L.V., Solovjov, D.A., Ingham, K.C. (1996). Domain structure, stability and interactions in streptokinase. Eur. J. Biochem. 239(2):333–339.doi:10.1111/j.1432-1033.1996.0333u.x.

Mihara, H., Sumi, H., Yoneta, T., Mizumoto, H., Ikeda, R., Seiki, M., Maruyama, M. (1991). A novel fibrinolytic enzyme extracted from the earthworm, Lumbricus rubellus. Jpn. J. Physiol. 41(3):461–472.doi:10.2170/jjphysiol.41.461.

Mine, Y., Kwan Wong, A.H., Jiang, B. (2005). Fibrinolytic enzymes in Asian traditional fermented foods. Dalam Food Research International. Vol. 38. hlm. 243–250.

De Moerloose, P., Boehlen, F., Neerman-Arbez, M. (2010). Fibrinogen and the risk of thrombosis. Semin. Thromb. Hemost. 36(1):7–17.doi:10.1055/s-0030-1248720.

Mohanasrinivasan, V., Mohanapriya, A., Potdar, S., Chatterji, S., Konne, S., Kumari, S., Keziah, S.M., Subathra, D.C. (2017). In vitro and in silico studies on fibrinolytic activity of nattokinase: A clot buster from Bacillus sp. Front. Biol. (Beijing). 12(3):219–225.doi:10.1007/s11515-017-1453-3.

Moreira, I.S., Koukos, P.I., Melo, R., Almeida, J.G., Antonio, J.P., Schaarschmidt, J., Trellet, M., Gümüş, Z.H., Costa, J., Alexandre, M, et al. (2017). SpotOn : High Accuracy Identification of Protein-Protein Interface Hot-Spots. (July):1–11.doi:10.1038/s41598-017-08321-2.

Morya, V.K., Yadav, S., Kim, E.K., Yadav, D. (2012). In silico characterization of alkaline proteases from different species of aspergillus. Appl. Biochem. Biotechnol. 166(1):243–257.doi:10.1007/s12010-011-9420-y.

Mukherjee, A.K., Rai, S.K., Thakur, R., Chattopadhyay, P., Kar, S.K. (2012). Bafibrinase: A non-toxic, non-hemorrhagic, direct-acting fibrinolytic serine protease from Bacillus sp. strain AS-S20-I exhibits in vivo anticoagulant activity and thrombolytic potency. Biochimie. 94(6):1300–1308.doi:10.1016/j.biochi.2012.02.027.

Nailufar, F., Tjandrawinata, R.R., Suhartono, M.T. (2016). Thrombus Degradation by Fibrinolytic Enzyme of Stenotrophomonas sp. Originated from Indonesian Soybean-Based Fermented Food on Wistar Rats. Adv. Pharmacol. Sci. 2016:1–9.doi:10.1155/2016/4206908.

Nakajima, N., Mihara, H., Sumi, H., Mihara, H., Sumi, H. (1993). Characterization of Potent Fibrinolytic Enzymes in Earthworm, Lumbricus rubellus. Biosci. Biotechnol. Biochem. 57(10):1726–1730.doi:10.1271/bbb.57.1726.

Nakamura, T., Yamagata, Y., Ichishima, E. (1992). Nucleotide Sequence of the Subtilisin NAT Gene, aprN, of Bacillus subtilis (natto). Biosci. Biotechnol. Biochem. 56(11):1869–1871.doi:10.1271/bbb.56.1869.

Noh, K., Kim, D., Choi, N., Kim, S. (1999). Isolation of fibrinolytic enzyme producing strains from kimchi. Korean J. Food Sci. Technol. 31(1):219–223.

Ogbadu, L.J., Okagbue, R.N. (1988). Fermentation of African locust bean (Parkia biglobosa) seeds: involvement of different species of Bacillus. Food Microbiol. 5(4):195–199.doi:10.1016/0740-0020(88)90018-4.

Olson, S.T., Bjork, I. (1994). Regulation of thrombin activity by antithrombin and heparin. Semin. Thromb. Hemost. 20(4):373–409.doi:10.1055/s-2007-1001928.

Ouoba, L.I.I., Cantor, M.D., Diawara, B., Traoré, A.S., Jakobsen, M. (2003). Degradation of African locust bean oil by Bacillus subtilis and Bacillus pumilus isolated from soumbala, a fermented African locust bean condiment. J. Appl. Microbiol. 95(4):868–873.doi:10.1046/j.1365-2672.2003.02063.x.

Paik, H., Lee, S., Heo, S., Kim, S., Lee, H., Kwon, T. (2004). Purification and characterization of the fibrinolytic enzyme produced by Bacillus subtilis KCK-7 from Chungkookjang. J. Microbiol. Biotechnol. 14:829–835.

Palta, S., Saroa, R., Palta, A. (2014). Overview of the coagulation system. Indian J. Anaesth. 58(5):515–523.doi:10.4103/0019-5049.144643.

Park, S.G., Kho, C.W., Cho, S., Lee, D.H., Kim, S.H., Park, B.C. (2002). A functional proteomic analysis of secreted fibrinolytic enzymes from Bacillus subtilis 168 using a combined method of two-dimensional gel electrophoresis and zymography. Proteomics. 2(2):206–211.doi:10.1002/1615-9861(200202)2:2<206::AID-PROT206>3.0.CO;2-5.

Peng, Y., Huang, Q., Zhang, R., Zhang, Y. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi , a traditional Chinese soybean food. Comp. Biochem. Physiol. Part B. 134:45–52.doi:10.1016/s1096-4959(02)00183-5.

Peng, Y., Yang, X., Zhang, Y. (2005). Microbial fibrinolytic enzymes: An overview of source, production, properties, and thrombolytic activity in vivo. Appl. Microbiol. Biotechnol. 69(2):126–132.doi:10.1007/s00253-005-0159-7.

Peng, Y., Yang, X.J., Xiao, L., Zhang, Y.Z. (2004). Cloning and expression of a fibrinolytic enzyme (subtilisin DFE) gene from Bacillus amyloliquefaciens DC-4 in Bacillus subtilis. Res. Microbiol. 155(3):167–173.doi:10.1016/j.resmic.2003.10.004.

Peng, Y., Zhang, Y. (2002). Optimation of fermentation conditions of douchi fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4. Chinese J. Appl. Environ. Biol. 8:285–289.

Pennica, D., Holmes, W.E., Kohr, W.J., Harkins, R.N., Vehar, G.A., Ward, C.A., Bennett, W.F., Yelverton, E., Seeburg, P.H., Heyneker, H.L., et al. (1983). Cloning and expression of human tissue-type plasminogen activator cDNA in E. coli. Nature. 301(5897):214–221.doi:10.1038/301214a0.

Pirooznia, M., Gong, P., Guan, X., Inouye, L.S., Yang, K., Perkins, E.J., Deng, Y. (2007). Cloning, analysis and functional annotation of expressed sequence tags from the Earthworm Eisenia fetida. BMC Bioinformatics. 8(SUPPL. 7):1–16.doi:10.1186/1471-2105-8-S7-S7.

Pranaw, K., Singh, S., Dutta, D., Chaudhuri, S., Ganguly, S., Nain, L. (2014). Statistical Optimization of Media Components for Production of Fibrinolytic Alkaline Metalloproteases from Xenorhabdus indica KB-3. Biotechnol. Res. Int. 2014:1–11.doi:10.1155/2014/293434.

Prihanto, A.A., Firdaus, M., Prihanto, A.A. (2013). Proteolytic And Fibrinolytic Activities Of Halophilic Lactic Acid Bacteria From Two Indonesian Fermented Foods. J. Microbiol. Biotechnol. Food Sci. 2(5):2291–2293.

Randolph, A., Chamberlain, S.H., Chu, H.C., Retzios, A.D., Markland, F.S., Masiarz, F.R. (1992). Amino acid sequence of fibrolase, a direct-acting fibrinolytic enzyme from Agkistrodon contortrix contortrix venom. Protein Sci. 1:590–600.doi:10.1002/pro.5560010505.

Rao, M.B., Tanksale, A.M., Ghatge, M.S., Deshpande, V.V. (1998). Molecular and Biotechnological Aspects of Microbial Proteases. Microbiol. Mol. Biol. Rev. 62(3):597–635.doi:10.1016/S0168-6445(99)00006-6.

Repetto, O., De Re, V. (2017). Coagulation and fibrinolysis in gastric cancer. Ann. N. Y. Acad. Sci. 1404(1):27–48.doi:10.1111/nyas.13454.

Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual. Ed ke-2. New York, USA: Cold Spring Harbor Laboratory Press.

Sanderson, I.R., Walker, W.A. (1993). Uptake and transport of macromolecules by the intestine: Possible role in clinical disorders (an update). Gastroenterology. 104(2):622–639.doi:10.1016/0016-5085(93)90436-G.

Sanger, F., Coulson, A. (1976). A Rapid Method for Determining Sequences in DNA by Primed Synthesis with DNA Polymerase. J. Mol. Biol. 94:441–448.doi:10.1016/0022-2836(75)90213-2.

Santiveri, C.M., Santoro, J., Rico, M., Énez, M.A.J.I.M. (2004). Factors involved in the stability of isolated Beta sheets : Turn sequence , Beta sheet twisting, and hydrophobic surface burial. Protein Sci. 13:1134–1147.doi:10.1110/ps.03520704.also.

Sasaki, K., Moriyama, S., Tanaka, Y. (1985). The transport of 125I-labeled human high molecular weight urokinase across the intestinal tract in a dog model with stimulation of synthesis and/or release of plasminogen activators. Blood. 66(1):69–75.doi:10.1182/blood.v66.1.69.69.

Seo, J., Lee, S. (2004). Production of Fibrinolytic Enzyme from Soybean Grits Fermented by Bacillus firmus NA-1. J. Med. Food. 7(4):442–449.doi:10.1089/jmf.2004.7.442.

Seo, M., Park, J., Kim, E., Hohng, S., Kim, H. (2014). Protein conformational dynamics dictate the binding affinity for a ligand. Nat. Commun.:1–7.doi:10.1038/ncomms4724.

Sigrist, C.J.A., Cerutti, L., De Castro, E., Langendijk-Genevaux, P.S., Bulliard, V., Bairoch, A., Hulo, N. (2010). PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res. 38(SUPPL.1):161–166.doi:10.1093/nar/gkp885.

Simkhada, J.R., Mander, P., Cho, S.S., Yoo JC. 2010. A novel fibrinolytic protease from Streptomyces sp . CS684. Process Biochem. J. 45:88–93.doi:10.1016/j.procbio.2009.08.010.

Singh, T.A., Devi, K.R., Ahmed, G., Jeyaram, K. (2014). Microbial and endogenous origin of fi brinolytic activity in traditional fermented foods of Northeast India. Food Res. Int. 55:356–362.doi:10.1016/j.foodres.2013.11.028.

Stanbury, P.F, Whitaker, A., Hall, S.J. (2003). Principles of Fermentation Technology. Ed ke-2. United Kingdom: MPG Books Ltd, Bodmin, Cornwall.

Stephani, L., Tjandrawinata, R.R., Nur, D., Lim, Y., Ismaya, W.T., Suhartono, M.T. (2017a). Food Origin Fibrinolytic Enzyme With Multiple Actions Food Origin Fibrinolytic Enzyme With Multiple Actions. HAYATI J. Biosci. 24(3):124–130.doi:10.1016/j.hjb.2017.09.003.

Stephani, L., Tjandrawinata RR, Nur D, Lim Y, Ismaya WT, Suhartono MT. (2017b). Food Origin Fibrinolytic Enzyme With Multiple Actions. HAYATI J. Biosci. 24:124–130.doi:10.1016/j.hjb.2017.09.003.

Sugimoto, M., Nakajima, N. (2001). Molecular cloning, sequencing, and expression of cDNA encoding serine protease with fibrinolytic activity from earthworm. Biosci. Biotechnol. Biochem. 65(7):1575–1580.doi:10.1271/bbb.65.1575.

Sugimoto, S., Fujii, T., Morimiya, T., Johdo, O., Nakamura, T. (2007). The Fibrinolytic Activity of a Novel Protease Derived from a Tempeh Producing Fungus, Fusarium sp. BLB. Biosci. Biotechnol. Biochem. 71(9):2184–2189.doi:10.1271/bbb.70153.

Sumi, H., Hamada, H., Nakanishi, K., Hiratani, H. (1990). Enhancement of the fibrinolytic activity in plasma by oral administration of nattokinase. Acta Haematol. 84:139–143.doi:10.1159/000205051.

Sumi, H., Hamada, H., Tsushima, H., Mihara, H., Muraki, H. (1987). A novel fibrinolytic enzyme (nattokinase) in the vegetable cheese Natto; a typical and popular soybean food in the Japanese diet. Experentia. 43(10):1110–1111.doi:10.1007/bf01956052.

Sumi, H., Nakajima, N., Yatagai, C. (1995). A unique strong fibrinolytic enzyme ( katsuwokinase ) in skipjack “ Shiokara ,” a Japanese traditional fermented food *. Comp. Biochem. Physiol. I(3):543–547.doi:10.1016/0305-0491(95)00100-x.

Sumi, H., Yanagisawa, Y., Yatagai, C., Saito, J. (2004). Natto bacillus as an oral fibrinolytic agent: Nattokinase activity and the ingestion effect of bacillus subtilis natto. Food Sci. Technol. Res. 10(1):17–20.doi:10.3136/fstr.10.17.

Sung, J.H., Ahn, S.J., Kim, N.Y., Jeong, S.K., Kim, J.K., Chung, J.K., Lee, H.H. (2010). Purification, molecular cloning, and biochemical characterization of subtilisin JB1 from a newly isolated Bacillus subtilis JB1. Appl. Biochem. Biotechnol. 162(3):900–911.doi:10.1007/s12010-009-8830-6.

Suwanmanon, K., Hsieh, P.C. (2014). Effect of γ-aminobutyric acid and nattokinase-enriched fermented beans on the blood pressure of spontaneously hypertensive and normotensive Wistar-Kyoto rats. J. Food Drug Anal. 22(4):485–491.doi:10.1016/j.jfda.2014.03.005.

Suzuki, Y., Kondo, K., Matsumoto, Y., Zhao, B.Q., Otsuguro, K., Maeda, T., Tsukamoto, Y., Urano, T., Umemura, K. (2003). Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci. 73(10):1289–1298.doi:10.1016/S0024-3205(03)00426-0.

Syahbanu, F., Kezia, E,. Puera, N., Giriwono, P.E., Tjandrawinata, R.R., Suhartono, M.T. (2020a). Fibrinolytic bacteria of Indonesian fermented soybean: preliminary study on enzyme activity and protein profile. Food Sci. Technol. Vol. 40 (No. Suppl 2): 458-465. doi: 10.1590/fst.23919

Syahbanu, F., Giriwono, P.E., Tjandrawinata, R.R., Suhartono, M.T. (2020b). Molecular analysis of fibrin-degrading enzyme from Bacillus subtilis K2 isolated from Indonesian fermented soybean. Mol Biol Rep. Vol 47(11): 8553-8563. doi:10.1007/s11033-020-05898-2

Syahbanu, F., Giriwono, P.E., Tjandrawinata, R.R., Suhartono, M.T. (2022). Molecular docking of Subtilisin K2, a fibrin-degrading enzyme from Indonesian moromi, with its substrates. Food Sci. Technol. Vol 42: 1-8. doi: 10.1590/fst.61820

Thielemans, L., Hanif, M., Crawley, J. (2019). The Coagulation Cascade and its Therapeutic Modulation. Dalam Guymer S, Terracino C (ed.) in Heart of the Matter Key: Key concepts in cardiovascular science. Vol. 206. Ed ke-1 hlm. 193–206. Springer Nature Switzerland AG, Switzerland, CH.

Tjandrawinata, R.R., Trisina, J., Rahayu, P., Prasetya, L.A., Hanafiah, A., Rachmawati, H. (2014). Bioactive protein fraction DLBS1033 containing lumbrokinase isolated from Lumbricus rubellus: Ex vivo, in vivo, and pharmaceutic studies. Drug Des. Devel. Ther. 8:1585–1593.doi:10.2147/DDDT.S66007.

Tortora, G.J., Derrickson, B. (2014). Principles of Anatomy and Physiology. John Willey & Sons, New York (US).

Trisina, J., Sunardi, F., Suhartono, M.T., Tjandrawinata, R.R. (2011). DLBS1033, a protein extract from lumbricus rubellus, possesses antithrombotic and thrombolytic activities. J. Biomed. Biotechnol. 2011:1–7.doi:10.1155/2011/519652.

Tseng, G.N., Sonawane, K.D., Korolkova, Y V., Zhang M, Liu J, Grishin E V., Guy HR. 2007. Probing the outer mouth structure of the hERG channel with peptide toxin footprinting and molecular modeling. Biophys. J. 92(10):3524–3540.doi:10.1529/biophysj.106.097360.

Tsurupa, G., Hantgan, R.R., Burton, R.A., Pechik, I., Tjandra, N., Medved, L. (2009). Structure, stability, and interaction of the fibrin(ogen) αC-domains. Biochemistry. 48(51):12191–12201.doi:10.1021/bi901640e.

Uesugi, Y., Usuki, H., Iwabuchi, M., Hatanaka, T. (2011). Highly potent fibrinolytic serine protease from Streptomyces. Enzyme Microb. Technol. 48(1):7–12.doi:10.1016/j.enzmictec.2010.08.003.

Urano, T., Ihara, H., Umemura, K., Suzuki, Y., Oike, M., Akita, S., Tsukamoto, Y., Suzuki, I., Takada, A. (2001). The Profibrinolytic Enzyme Subtilisin NAT Purified from Bacillus subtilis Cleaves and Inactivates Plasminogen Activator Inhibitor Type 1. J. Biol. Chem. 276(27):24690–24696.doi:10.1074/jbc.M101751200.

Vangone, A., Bonvin, A.M.J.J. *2015). Contacts-based prediction of binding affinity in protein–protein complexes. Elife. 4 (JULY2015):1–15.doi:10.7554/eLife.07454.

Vasantha, N., Thompson, L.D., Rhodes, C., Banner, C., Nagle, J., Filpula, D. (1984). Genes for alkaline protease and neutral protease from Bacillus amyloliquefaciens contain a large open reading frame between the regions coding for signal sequence and mature protein. J. Bacteriol. 159(3):811–819.doi:10.1128/jb.159.3.811-819.1984.

Vijayaraghavan, P., Raj, S.R.F., Gnana, S., Vincent, P. (2015). Purification and Characterization of Fibrinolytic Enzyme from Pseudoalteromonas sp ., IND11 and its in vitro Activity on Blood Clot. Int. J. Biol. Chem. 9(1):11–20.doi:10.3923/ijbc.2015.11.20.

Voet, D., Voet, J.G. (1997). Biochemistry. Second. New York, USA: John Wiley & Sons, Incorporated.

Wang, C.T., Ji, B.P., Li, B., Nout, R., Li, P.L., Ji, H., Chen, L.F. (2006). Purification and characterization of a fibrinolytic enzyme of Bacillus subtilis DC33, isolated from Chinese traditional Douchi. J. Ind. Microbiol. Biotechnol. 33(9):750–758.doi:10.1007/s10295-006-0111-6.

Wang, S.H., Zhang, C., Yang, Y.L., Diao, M., Bai, M.F. (2008). Screening of a high fibrinolytic enzyme producing strain and characterization of the fibrinolytic enzyme produced from Bacillus subtilis LD-8547. World J. Microbiol. Biotechnol. 24(4):475–482.doi:10.1007/s11274-007-9496-2.

Wei, Q., Wang, H., Chen, Z. (2013). Profiling of dynamic changes in the microbial community during the soy sauce fermentation process. Appl. Microb. CELL Physiol. 97:9111–9119.doi:10.1007/s00253-013-5146-9.

Wei, X., Luo, M., Xu, L., Zhang, Y., Lin, X., Kong, P., Liu, H. (2011). Production of Fibrinolytic Enzyme from Bacillus amyloliquefaciens by Fermentation of Chickpeas , with the Evaluation of the Anticoagulant and Antioxidant Properties of Chickpeas. J. Agric. Food Chem. 59:3957–3963.doi:10.1021/jf1049535.

Wells J., Cunningham BC, Graycar T., Estell DA. 1986. Importance of hydrogen-bond formation in stabilizing the transition state of subtilisin. Philos. Trans. R. Soc. London. 317(1540):415–423.doi:10.1098/rsta.1986.0051.

Weng, Y., Yao, J., Sparks, S., Wang, K.Y. (2017). Nattokinase: An oral antithrombotic agent for the prevention of cardiovascular disease. Int. J. Mol. Sci. 18(3):1–13.doi:10.3390/ijms18030523.

Wolberg, A.S. (2007). Thrombin generation and fibrin clot structure. Blood Rev. 21(3):131–142.doi:10.1016/j.blre.2006.11.001.

Wong, S.L., Price, C.W., Goldfarb, D.S., Doi, R.H. (1984). The subtilisin E gene of Bacillus subtilis is transcribed from a σ37 promoter in vivo. Proc. Natl. Acad. Sci. U. S. A. 81(4 I):1184–1188.doi:10.1073/pnas.81.4.1184.

Wong, M.Y.Z., Yap, J., Huang, W., Tan, S.Y. and Yeo, K.K., (2021). Impact of age and sex on subclinical coronary atherosclerosis in a healthy Asian population. JACC: Asia, 1(1): 93-102.

Wu, D.J., Lin, C.S., Lee, M.Y. (2009). Lipid-lowering effect of nattokinase in patients with primary hypercholesterolemia. Acta Cardiol. Sin. 25(1):26–30.

Wu, J., Gullo, M., Chen, F., Giudici, P. (2010). Diversity of acetobacter pasteurianus strains isolated from solid-state fermentation of cereal vinegars. Curr. Microbiol. 60(4):280–286.doi:10.1007/s00284-009-9538-0.

Wu, J.X., Zhao, X.Y., Pan, R., He, R.Q. (2007). Glycosylated trypsin-like proteases from earthworm Eisenia fetida. Int. J. Biol. Macromol. 40:399–406.doi:10.1016/j.ijbiomac.2006.10.001.

Wun, D., Voet, J.G. (1982). Isolation and characterization of urokinase from human plasma. J. Biol. Chem. 257(10):3276–3283.doi:10.1021/ja01106a534.

Xiao-lan, L., Lian-xiang, D., Fu-ping, L., Xi-qun, Z., Jing, X. (2005). Purification and characterization of a novel fibrinolytic enzyme from Rhizopus chinensis 12. Appl. Microbiol. Biotechnol. 67(2):209–214.doi:10.1007/s00253-004-1846-5.

Xu, Z., Yang, Y., Gui, Q., Zhang, L., Hu L. (2010). Expression, purification, and characterization of recombinant lumbrokinase PI239 in Escherichia coli. Protein Expr. Purif. 69(2):198–203.doi:10.1016/j.pep.2009.08.013.

Yamashita, T., Oda, E., Giddings, J., Yamamoto, J. (2003). The Effect of Dietary Bacillus Natto Productive Protein on in vivo Endogenous Thrombolysis. Pathophysiol. Haemost. Thromb. 33:138–143.doi:10.1159/000077822.

Yan, F., Yan, J., Sun, W., Yao, L., Wang, J., Qi, Y. (2009). Thrombolytic effect of Subtilisin QK on carrageenan induced thrombosis model in mice. J. Thrombolysis. 28:444–448.doi:10.1007/s11239-009-0333-3.

Yan, X.M., Kim, C.H., Lee, C.K., Shin, J.S., Cho, I.H., Sohn, U.D. (2010). Intestinal absorption of fibrinolytic and proteolytic lumbrokinase extracted from earthworm, Eisenia andrei. Korean J. Physiol. Pharmacol. 14(2):71–75.doi:10.4196/kjpp.2010.14.2.71.

Yang, Y., Jiang, L., Yang, S., Zhu, L., Wu, Y., Li, Z. (2000). A mutant subtilisin E with enhanced thermostability. World J. Microbiol. Biotechnol. 16(3):249–251.doi:10.1023/A:1008959825832.

Yatagai, C., Maruyama, M., Kawahara, T., Sumi, H. (2008). Nattokinase-promoted tissue plasminogen activator release from human cells. Pathophysiol. Haemost. Thromb. 36(5):227–232.doi:10.1159/000252817.

Yau, J.W., Teoh, H., Verma, S. (2015). Endothelial cell control of thrombosis. BMC Cardiovasc. Disord. 15(1):1–11.doi:10.1186/s12872-015-0124-z.

Yin, L.J., Lin, H.H. and Jiang, S.T., 2010. Bioproperties of potent nattokinase from Bacillus subtilis YJ1. Journal of agricultural and food chemistry, 58(9): 5737-5742.

Yogesh, D., Halami, P.M. (2015). A fibrin degrading serine metallo protease of Bacillus circulans with α -chain speci fi city. 11:72–78.doi:10.1016/j.fbio.2015.04.007.

Yogesh, D., Halami, P.M. (2015). Evidence that multiple proteases of Bacillus subtilis can degrade fibrin and fibrinogen. Int. Food Res. J. 22(4):1662–1667.

Yogesh, D., Halami, P.M. (2017). Fibrinolytic enzymes of Bacillus spp .: an overview. Int. Food Res. J. 24(1):35–47.

Yoon, S.J., Yu, M.A., Sim, G.S., Kwon, S.T., Hwang, J.K., Shin, J.K., Yeo, I.H., Pyun, Y.R. (2002). Screening and characterization of microorganisms with fibrinolytic activity from fermented foods. J. Microbiol. Biotechnol. 12(4):649–656.

Yoshimoto, T., Oyama, H., Honda, T., Tone, H., Takeshita, T. (1988). Cloning and Expression of Subtilisin Amylosacchariticus Gene. J. Biochem. 103:1060–1065.doi:10.1093/oxfordjournals.jbchem.a122380.

Yu, Q., Li, P., Yang, Q. (2010). Improving the absorption of earthworm fibrinolytic enzymes with mucosal enhancers. Pharm. Biol. 48(7):816–821.doi:10.3109/13880200903283681.

Yuan, J., Yang, J., Zhuang, Z., Yang, Y., Lin, L., Wang, S. (2012). Thrombolytic effects of Douchi Fibrinolytic enzyme from Bacillus subtilis LD-8547 in vitro and in vivo.

Zakaria, Z., Madihah, M.S., Rashid, N.A.A. (2015). Screening and identification of fibrinolytic bacteria from malaysian fermented seafood products. J. Appl. Pharm. Sci. 5(10):22–31.doi:10.7324/JAPS.2015.501005.

Zhang, L., Zhou, R., Cui, R., Huang, J., Wu, C. (2016). Characterizing Soy Sauce Moromi Manufactured by High-Salt Dilute-State and Low-Salt Solid-State Fermentation Using Multiphase Analyzing Methods. 00(0):1–8.doi:10.1111/1750-3841.13516.

Zhang, R.H., Xiao, L., Peng, Y., Wang, H.Y., Bai, F., Zhang, Y. (2005). Gene expression and characteristics of a novel fibrinolytic enzyme (subtilisin DFE) in Escherichia coli. Lett. Appl. Microbiol. 41(2):190–195.doi:10.1111/j.1472-765X.2005.01715.x.

Refbacks

  • There are currently no refbacks.