Effect of Brevibacterium sp and Glucoamylase Enzyme on the Oil Adsorption Degree of Cassava Starch

Fina Uzwatania, Putri Ajeng Syahru Rahma, Dwi Ajias Pramasari, Riska Surya Ningrum, Dewi Sondari

Abstract

Improper oil waste management contributes to environmental degradation, notably water pollution. Because conventional methods for treating oil pollutants are costly and have limited removal efficacy, the use of natural adsorbents is recommended due to their dependability and affordability. The purpose of this study was to see how modified cassava starch affected oil adsorption using two types of enzymes: Brevibacterium sp amylase enzymes derived from Indonesian marine bacteria and commercial amylase enzyme (Dextrozyme® GA).Oil-adsorption degree is applied to several types of oil, including palm oil and olive oil. The findings revealed that the properties of modified starch differed from those of native starch in both physical and chemical terms. The modified starch produced by hydrolysis of the glucoamylase enzyme (Dextrozyme ® GA)had a yield of 80.16 %, reducing sugar content of 0.20 g/L at 24 h, and a particle size of 377 nm, which is lower than the starch hydrolyzed by Brevibacterium sp. In contrast, the degree of oil adsorption in the glucoamylase enzyme (Dextrozyme ® GA) is higher than Brevibacterium sp. Statistical analysis showed that the oil adsorption degree is affected by the type of enzyme, therefore, the modified starch from Brevibacterium sp still needs improvement to be competitive for oil adsorption compared with the modified starch from the glucoamylase enzyme (Dextrozyme ® GA).

Keywords

Brevibacterium sp; glucoamylase; modified starch; oil-adsorbing

References

Bahanawan, A., Kusumah, S. S., Darmawan, T., Ismadi, Masruchin, N., Sudarmanto, Jayadi, Pramasari, D. A., Triwibowo, D., Kusumaningrum, W. B., Wibowo, E. S., Syamani, F. A., Krishanti, N. P. R. A., Lestari, E., Amin, Y., Sufiandi, S., Syahrir, A., dan Dwianto, W. (2019). Moisture content, color quantification and starch content of oil palm trunk (Elaeis guineensis Jacq.). IOP Conference Series: Earth and Environmental Science, 374(1). https://doi.org/10.1088/1755-1315/374/1/012041

Chen, X., Hu, Z., Chen, D., dan Feng, T. (2022). Preparation and physiochemical properties of enzymatically modified octenyl succinate starch. Journal of Food Science, March. https://doi.org/10.1111/1750-3841.16122

Condés, M. C., Añón, M. C., Mauri, A. N., dan Dufresne, A. (2015). Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids, 47, 146–157. https://doi.org/10.1016/j.foodhyd.2015.01.026

Dai, L., Li, C., Zhang, J., dan Cheng, F. (2018). Preparation and characterization of starch nanocrystals combining ball milling with acid hydrolysis. Carbohydrate Polymers, 180(September 2017), 122–127. https://doi.org/10.1016/j.carbpol.2017.10.015

Effendi, Z., Surawan, F. E. D., dan Sulastri, Y. (2016). Sifat Fisik Mie Basah Berbahan Dasar Tepung Komposit Kentang dan Tapioka. Jurnal Agroindustri, 6(November), 57–64.

Ega, L., dan Lopulalan, C. G. C. (2015). Modifikasi Pati Sagu Dengan Metode Heat Moisture Treatment. AGRITEKNO: Jurnal Teknologi Pertanian, 4(2), 33–40.

https://doi.org/10.30598/jagritekno.2015.4.2.33

Faridah, D. N. (2011). Perubahan Karakteristik Kristalin Pati Garut (Maranta arundinaceae L.) dalam Pengembangan Pati Tesisten Tipe III. Thesis, 1–184.

Harianies, L., Yunianta, dan Argo, B. D. (2009). Pembuatan pati tinggi amilosa secara enzimatis dari pati ubi kayu (Manihot esculenta) dan aplikasinya untuk pembuatan maltosa. El–Hayah, 1(1), 14–24. https://doi.org/10.18860/elha.v1i1.1683

Hashim, S. O. (2019). Starch-Modifying Enzymes. https://doi.org/10.1007/10

Hassan, M. A. A., dan Puteh, M. H. (2007). Pre-Treatment of Palm Oil Mill Effluent (POME): A Comparison Study Using Chitosan and Alum. 19(2), 38–51.

International Rice Research Institution (IRRI). (1978). Standard Evaluation System for Rice. IRRI.

Jahi, N., Ling, E. S., Othaman, R., dan Ramli, S. (2015). Modification of oil palm plantation wastes as oil adsorbent for palm oil mill effluent (POME). Malaysian Journal of Analytical Sciences, 19(1), 31–40.

Jasni, J., Arisht, S. N., Mohd Yasin, N. H., Abdul, P. M., Lin, S. K., Liu, C. M., Wu, S. Y., Jahim, J. M., dan Takriff, M. S. (2020). Comparative toxicity effect of organic and inorganic substances in palm oil mill effluent (POME) using native microalgae species. Journal of Water Process Engineering, 34(January), 101165. https://doi.org/10.1016/j.jwpe.2020.101165

Kern dan Sohn GmbH. (2013). Operating manual Electronic Moisture Analyser KERN MLB _ C. 1–77.

Kim, H. Y., Park, S. S., dan Lim, S. T. (2015). Preparation, characterization and utilization of starch nanoparticles. Colloids and Surfaces B: Biointerfaces, 126, 607–620. https://doi.org/10.1016/j.colsurfb.2014.11.011

Kim, J. Y., Park, D. J., dan Lim, S. T. (2008). Fragmentation of waxy rice starch granules by enzymatic hydrolysis. Cereal Chemistry, 85(2), 182–187. https://doi.org/10.1094/CCHEM-85-2-0182

Kustyawati, M. E., Sari, M., dan Haryati, T. (2013). Efek Fermentasi dengan Saccharomyces cerevisiae Terhadap Karakteristik Biokimia Tapioka. Agritech, 33(3), 281–287.

Le Corre, D. (2011). Starch nanocrystals : Preparation and Application to bio-based flexible packaging. Université de Grenoble.

Lecorre, D., Vahanian, E., Dufresne, A., dan Bras, J. (2012). Enzymatic pretreatment for preparing starch nanocrystals. Biomacromolecules, 13(1), 132–137. https://doi.org/10.1021/bm201333k

Lin, Y., Liu, L., Li, L., Xu, Y., Zhang, Y., dan Zeng, H. (2022). Properties and digestibility of a novel porous starch from lotus seed prepared via synergistic enzymatic treatment. International Journal of Biological Macromolecules, 194(November 2021), 144–152. https://doi.org/10.1016/j.ijbiomac.2021.11.196

Majzoobi, M., Hedayati, S., dan Farahnaky, A. (2015). Functional properties of microporous wheat starch produced by α-amylase and sonication. Food Bioscience, 11, 79–84. https://doi.org/10.1016/j.fbio.2015.05.001

Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31(3), 426–428. https://doi.org/10.1021/ac60147a030

Parwiyanti, Pratama, F., dan Arnita, R. (2011). Sifat Kimia dan Fisik Gula Cair dari Pati Umbi Gadung (Dioscorea hispida Dennts) [Chemical and Physical Properties of Liquid Sugar from Yam (Dioscorea hispida Dennts) Starch]. Hasil Penelitian J. Teknol. Dan Industri Pangan, XXII(2).

Pramasari, D. A., Sondari, D., Adi, D. S., Widyaningrum, B. A., Fajar, A., Putri, R., Restu, W. K., dan Putri, E. H. (2020). Karakteristik Pati Berpori Mikro dari Tapioka Hasil Perlakuan Amilase sebagai Agen Penjerapan Minyak. Jurnal Teknologi & Industri Hasil Pertanian, 25(2), 71–80.

Purnawan, A., Capriyanti, Y., Kurniatin, P., dan Rahmani, N. (2015). Optimasi produksi enzim amilase dari bakteri laut jakarta (Arthrobacter Arilaitensis). Indonesian Journal of Biology, 11(2), 215–224.

Rahmani, N., Andriani, A., dan Prima, A. (2011). Production and characterization of amylase enzyme from marine bacteria. Proceedings of the 2nd International Seminar on Chemistry. November 2011. Jatinangor.

Rahmani, N., Andriani, A., Yopi, Y., dan Hartati, S. (2015). Production of Malto-Oligosaccharides from Cassava Cultivar Kuning. Jurnal Penelitian Pascapanen Pertanian, 12(3), 147–155.

Rahmani, N., Putri, F. H., Martin, A. F., dan Yopi. (2019). Enzymatic Hydrolysis Of Hutan Jati Variety Cultivar Tacca (Tacca leontopetaloides) Starch by The Brevibacterium sp. α-Amylase And Its Potential for Production of Maltooligosaccharides. Biotropia, 26(2), 104–114. https://doi.org/10.11598/btb.2019.26.2.890

Robertson, G. H., Wong, D. W. S., Lee, C. C., Wagschal, K., Smith, M. R., dan Orts, W. J. (2006). Native or raw starch digestion: A key step in energy efficient biorefining of grain. Journal of Agricultural and Food Chemistry, 54(2), 353–365. https://doi.org/10.1021/jf051883m

Romadona, D. N. (2012). Hidrolisis pati palma menggunakan α -amilase (Skripsi). Institut Pertanian Bogor. Bogor.

Silva, N. M. C. Da, Lima, F. F. de, Fialho, R. L. L., Albuquerque, E. C. d. M. C., Velasco, J. I., dan Fakhouri, F. M. (2018). Production and Characterization of Starch Nanoparticles. Applications of Modified Starches. https://doi.org/10.5772/intechopen.74362

Sondari, D., Kusumaningrum, W. B., Akbar, F., Putri, R., Fahmiati, S., Sampora, Y., dan Muawanah, A. (2020). Penambahan Fraksi Amilosa Terhadap Sifat Fisik Dan Mekanis Edible Film Pati Tapioka. Jurnal Kimia Dan Kemasan, 42(2), 74. https://doi.org/10.24817/jkk.v42i2.6095

Uthumporn, U., Zaidul, I. S. M., dan Karim, A. A. (2010). Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88(1), 47–54. https://doi.org/10.1016/j.fbp.2009.10.001

Vamadevan, V., dan Bertoft, E. (2015). Structure-function relationships of starch components. Starch/Staerke, 67(1–2), 55–68. https://doi.org/10.1002/star.201400188

Winarno, F. . (2010). Enzim Pangan (Edisi Revi). M-Brio Press.

Wu, Y., Du, X., Ge, H., dan Lv, Z. (2011). Preparation of microporous starch by glucoamylase and ultrasound. Starch/Staerke Journal, 63(4), 217–225. https://doi.org/10.1002/star.201000036

Yunianta, Sulistyo, T., Estiasih, T., dan Wulan, N. (2010). Hidrolisis Secara Sinergis Pati Garut (Marantha arundinaceae L.) Oleh Enzim Amylase, Glukoamilase dan Pullunase Untuk Produksi Sirup Glukosa. Jurnal Teknologi Pertanian, 11, 78–86.

Zhai, Y., Li, X., Bai, Y., Jin, Z., dan Svensson, B. (2022). Maltogenic α-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocolloids, 124(PA), 107256. https://doi.org/10.1016/j.foodhyd.2021.107256

Zhang, D., Jiang, F., Ling, J., Ouyang, X. kun, dan Wang, Y. G. (2021). Delivery of curcumin using a zein-xanthan gum nanocomplex: Fabrication, characterization, and in vitro release properties. Colloids and Surfaces B: Biointerfaces, 204, 111827. https://doi.org/10.1016/j.colsurfb.2021.111827

Refbacks

  • There are currently no refbacks.