Analysis of Land Use Change in Upper Serayu Watersheds Using Remote Sensing and Geographic Information Systems

Yuari Susanti, Syafrudin Syafrudin, Muhammad Helmi

Abstract


Globalization and the development of science and  technology cause human  needs increase. This has an effect on land use, especially in watershed areas. Serayu is one of watershed in Central Java which is have problems related to land use, which occurs in the upper of the watershed. Agricultural Intensification, deforestation, an increase in population are factors that drives land use changes in the upper of Serayu watershed. The utilization of  watershed areas that ignore spatial rules causes pollution and land degradation. That condition happened and this makes the Serayu watershed one of the priority watersheds for rehabilitation in Indonesia. Remote Sensing (RS) and Geographic Information Systems (GIS) are tools that used to analyze land use changes that occurred in 2009-2019. Land use are classified into six classes ; water bodies (rivers, lakes, ponds), built-up areas, shrubs, forests, agriculture (rice fields, fields), and empty land.

Keywords


land use changes, serayu, remote sensing, GIS, watershed

rticle

References


Notohadiprawiro,T. (1991). Tanah dan lingkungan. Kursus AMDAL Pusat Penelitian Lingkungan Hidup. Yogyakarta,Indonesia: Universitas Gadjah Mada.

Purwowidodo.(1983). Teknologi Mulsa. Jakarta, Indonesia: Dewaruci Press.

Arsyad, S. (2010). Konservasi Tanah dan Air. Bogor, Indonesia: IPB Press.

Fitriyanto, B. R. (2018) Pengaruh Dinamika Lahan Urban Terhadap Sebaran Kekritian Daerah Resapan Pada Daerah Aliran Sungai Yang Bermuara Di Teluk Jakarta. Universitas diponegoro.

Kusrini, Suharyadi dan Hardoyo, S. R. (2011).Perubahan penggunaan lahan dan faktor yang mempengaruhinya di kecamatan gunungpati kota semarang,” Majalah Geografi Indonesia, 25(1), hal. 25–420.

Giri, C. P. (2012). Remote Sensing of Land Use and Land Cover: Principles and Applications. R. Indiana: CRC Press.

Suryanto.(2013).antara,Antara news. From : https://www.antaranews.com/berita/356260/282-das-di-indonesia-kritis.

Barlowe, R.(1986). Land Resources Economics. 4th ed. New Jersey: Prentice Hall Inc.

Munibah, K.(2008).Model spasial perubahan penggunaan/penutupan lahan dengan pendekatan cellular automata : Studi Kasus DAS Cidanau, Provinsi Banten.Globe.10. hal. 108–120.

Sampurno, R. M. dan Thoriq, A.(2016).Klasifikasi tutupn lahan menggunakan citra landsat 8 operational land imaginer (oli) di kabupaten sumedang. Jurnal Teknotan.10.

Miller SN, Phillip Guertin D, G. D.(2007).Hydrologic modeling uncertainty resulting from land cover misclassification. Journal of the American Water Resources Association.

Farida dan Noordwijk, M. V.(2004).Analisis debit sungai akibat alih guna lahan dan aplikasi model gerriver pada das way besai, sumberjaya.Agrivita.26(1).hal. 39–47.

Kehutanan, K. (2009) Peraturan Menteri Kehutanan Republik Indonesia Nomor : P. 32/Menhut-II/2009 Tentang Tata Cara Penyusunan Rencana Teknik Rehabilitasi Hutan dan Lahan Daerah Aliran Sungai (RTkRHL-DAS). From pada: http://sjdgge.ppj.unp.ac.id.

Asdak, C.(2010). Hidrologi dan Pengelolaan Daerah Aliran Sungai. Yogjakarta, Indonesia: Gadjah Mada University Press.

Suripin (2002) Pengelolaan Sumber Daya Tanah dan Air. Yogjakarta, Indonesia: Andi.

Syah, A. F. (2010).Penginderaan jauh dan aplikasinya di wilayah pesisir dan lautan.Jurnal Kelautan. 3(1).

Jariyah, N. A. dan Pramono, I. B.(2013).Kerentanan sosial ekonomi dan biofisik di das serayu. Jurnal Penelitian Sosial dan Ekonomi Kehutanan.10(3). hal. 141–156.

Iurist,N, Statescu ,F dan Lates,I.(2016).Analysis of land cover and land use changes using SENTINEL-2 images. PESD. VOL. 10.No 2

Andini,SW, Prasetyo,Y, Sukmono, A.(2018). Analisis sebaran vegetasi dengan citra satelit sentinel menggunakan metode ndvi dan segmentasi (studi kasus: kabupaten demak). Jurnal Geodesi Undip. Volume 7 Nomor 1.

ESA.2015. Sentinel-2 user handbook ESA Standart Document, European Space Agency (1):1-64

Https://landsat.usgs.gov/what-are-band-designations-landsat-satellites

Rizcanofana, R, Handayani, H. H. dan Deviantari, U. W. (2013) “Metode klasifikasi digital untuk citra satelit beresolusi tinggi worldview-2 pada unit pengembangan kertajaya dan dharmahusada Surabaya,” Jurnal Teknik Pomits.

M, F. B. S., Sasmito, B. dan Haniah. (2015). “Kajian metode segmentasi untuk identifikasi tutupan lahan dan luas bidang tanah menggunakan citra pada google earth (studi kasus : kecamatan tembalang, semarang.Jurnal Geodesi Undip.4.

Kushardono, D.(2017). Klasifikasi Digital Pada Penginderaan Jauh. Bogor, Indonesia: IPB Press.

Jhonneriea ,R et al.(2015). Random forest classification for mangrove land cover mapping using Landsat 5 TM and ALOS PALSAR imageries. Procedia Environmental Sciences 24 .215 – 221.

Phiria, et al.(2018). Effects of pre-processing methods on Landsat OLI-8 land cover classification using OBIA and random forests classifier. Int J Appl Earth Obs Geoinformation 73. 70–178

Ratna Reddy, V., Saharawat, Y. S. dan George, B. (2017).Watershed management in South Asia: A synoptic review.Journal of Hydrology. 551(May), hal. 4–13.




DOI: https://doi.org/10.20961/bioedukasi-uns.v13i1.37825

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Bioedukasi: Jurnal Pendidikan Biologi


BIOEDUKASI: Jurnal Pendidikan Biologi

Print p-ISSN: 1693-265X
Online ISSN: 2549-0605
Website: https://jurnal.uns.ac.id/bioedukasi
Email: bioedukasi@fkip.uns.ac.id
Published by: Department of Biology Education,Faculty of Teacher Training and Education, Universitas Sebelas Maret, Surakarta

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.