Application of litters to inhibit nitrification in Vertisols on sweet corn (Zea mays S.)

Supriyadi Supriyadi, Adiprasetya Widyatama, Gadis Mona Prinandhika, Purwanto Purwanto, Sri Hartati

Abstract

Nitrification, or the process of oxidation of ammonium to nitrate in the soil, needs to be inhibited because it reduces the efficiency of nitrogen fertilizers. Vertisols have 2:1 minerals and have high negative charge, so ammonium is more absorbed by soil particles, whereas nitrate is free to move in the soil and diffuses into the plant tissue or is leached with gravity water. This study aimed to determine the litter treatment that can inhibit the nitrification process in Vertisols on sweet corn plants. This research was conducted in June until November 2019 in the Plastic House of Plesungan, Gondangrejo, Karanganyar, Indonesia. This study used a basic completely randomized design with a single factor (litter type) as an immobilizer. The types of litter used in this study were Gliricidia maculata, Albizia falcataria, Senna siamea, and Tithonia diversifolia. The parameters observed were ammonium content, nitrification potential, average nitrate content, actual nitrification, plant height, number of leaves, and dry crown plant. Tithonia diversifolia gave the highest actual nitrification of 23.26%. Senna siamea has the lowest actual nitrification of 12.36%, followed by Gliricidia maculata with 17.39% and Albizia falcataria with 17.67%. This shows that the Tithonia diversifolia litter has the highest value in inhibiting nitrification. Maize plants treated with the Tithonia diversifolia litter had the best plant growth compared to those applied with other treatments. Therefore, among the treatments used, the Tithonia diversifolia litter was most optimal in inhibiting nitrification in Vertisols.

Keywords

Ammonium; Nitrate; Nitrification potential; Nitrification actual; Efficiency

Full Text:

PDF

References

Aziz, M. A., Hazra, F., Salma, S., & Nursyamsi, D. (2017). Soil Chemical Characteristics of Organic and Conventional Agriculture. Journal of Tropical Soils, 21(1), 19-25. https://doi.org/10.5400/jts.2016.v21i1.19-25

Ciampitti, I. A., Camberato, J. J., Murrell, S. T., & Vyn, T. J. (2013). Maize Nutrient Accumulation and Partitioning in Response to Plant Density and Nitrogen Rate: I. Macronutrients. Agronomy Journal, 105(3), 783-795. https://doi.org/10.2134/agronj2012.0467

Dolinšek, J., Lagkouvardos, I., Wanek, W., Wagner, M., & Daims, H. (2013). Interactions of Nitrifying Bacteria and Heterotrophs: Identification of a Micavibrio-Like Putative Predator of Nitrospira spp. Applied and Environmental Microbiology, 79(6), 2027-2037. https://doi.org/10.1128/AEM.03408-12

Dudek, M., Waroszewski, J., Kabała, C., & Łabaz, B. (2019). Vertisols properties and classification in relation to parent material differentiation near Strzelin (SW Poland). Soil Science Annual, 70(2), 158-169. https://doi.org/10.2478/ssa-2019-0014

Faeflen, S. J., Li, S., Xin, X., Wright, A. L., & Jiang, X. (2016). Autotrophic and Heterotrophic Nitrification in a Highly Acidic Subtropical Pine Forest Soil. Pedosphere, 26(6), 904-910. https://doi.org/10.1016/S1002-0160(15)60095-9

Fan, F., Yang, Q., Li, Z., Wei, D., Cui, X. a., & Liang, Y. (2011). Impacts of Organic and Inorganic Fertilizers on Nitrification in a Cold Climate Soil are Linked to the Bacterial Ammonia Oxidizer Community. Microbial Ecology, 62(4), 982-990. https://doi.org/10.1007/s00248-011-9897-5

Gong, P., Zhang, L.-L., Wu, Z.-J., Chen, Z.-H., & Chen, L.-J. (2013). Responses of Ammonia-Oxidizing Bacteria and Archaea in Two Agricultural Soils to Nitrification Inhibitors DCD and DMPP: A Pot Experiment. Pedosphere, 23(6), 729-739. https://doi.org/10.1016/S1002-0160(13)60065-X

Goulding, K. W. T. (2016). Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use and Management, 32(3), 390-399. https://doi.org/10.1111/sum.12270

Hachiya, T., & Sakakibara, H. (2017). Interactions between nitrate and ammonium in their uptake, allocation, assimilation, and signaling in plants. Journal of Experimental Botany, 68(10), 2501-2512. https://doi.org/10.1093/jxb/erw449

Iklima AS, R., Diansyah, G., Agussalim, A., & Mulia, C. (2019). Analisis Kandungan N-Nitrogen (Amonia, Nitrit, Nitrat) dan Fosfat di Perairan Teluk Pandan Provinsi Lampung. Jurnal Lahan Suboptimal : Journal of Suboptimal Lands, 8(1), 57-66. https://doi.org/10.33230/JLSO.8.1.2019.377

Kelly, C. N., Schoenholtz, S. H., & Adams, M. B. (2011). Soil properties associated with net nitrification following watershed conversion from Appalachian hardwoods to Norway spruce. Plant and Soil, 344(1), 361-376. https://doi.org/10.1007/s11104-011-0755-5

Lan, T., Han, Y., & Cai, Z. (2017). Comparison of Gross N Transformation Rates in Two Paddy Soils Under Aerobic Condition. Pedosphere, 27(1), 112-120. https://doi.org/10.1016/S1002-0160(15)60097-2

Le, T. T. H., Fettig, J., & Meon, G. (2019). Kinetics and simulation of nitrification at various pH values of a polluted river in the tropics. Ecohydrology & Hydrobiology, 19(1), 54-65. https://doi.org/10.1016/j.ecohyd.2018.06.006

Liu, C.-W., Sung, Y., Chen, B.-C., & Lai, H.-Y. (2014). Effects of Nitrogen Fertilizers on the Growth and Nitrate Content of Lettuce (Lactuca sativa L.). International Journal of Environmental Research and Public Health, 11(4), 4427-4440. https://doi.org/10.3390/ijerph110404427

Ma, H.-L., Gao, R., Yin, Y.-F., & Yang, Y.-S. (2016). Effects of leaf litter tannin on soil ammonium and nitrate content in two different forest soils of mount Wuyi, China. Toxicological & Environmental Chemistry, 98(3-4), 395-409. https://doi.org/10.1080/02772248.2015.1123483

Macdonald, B. C. T., Denmead, O. T., White, I., & Byrant, G. (2011). Gaseous Nitrogen Losses from Coastal Acid Sulfate Soils: A Short-Term Study. Pedosphere, 21(2), 197-206. https://doi.org/10.1016/S1002-0160(11)60118-5

Mahmood, F., Khan, I., Ashraf, U., Shahzad, T., Hussain, S., Shahid, M., Abid, M., & Ullah, S. (2017). Effects of organic and inorganic manures on maize and their residual impact on soil physico-chemical properties. Journal of soil science and plant nutrition, 17, 22-32. https://doi.org/10.4067/S0718-95162017005000002

Ngibad, K. (2019). Penentuan Konsentrasi Ammonium dalam Air Sungai Pelayaran Ngelom. Medicra (Journal of Medical Laboratory Science/Technology), 2(1), 37-42. http://ojs.umsida.ac.id/index.php/medicra/article/view/2071

Nishizawa, K., Tatsumi, S., Kitagawa, R., & Mori, A. S. (2016). Deer herbivory affects the functional diversity of forest floor plants via changes in competition-mediated assembly rules. Ecological Research, 31(4), 569-578. https://doi.org/10.1007/s11284-016-1367-6

Norton, J., & Ouyang, Y. (2019). Controls and Adaptive Management of Nitrification in Agricultural Soils [Review]. Frontiers in Microbiology, 10(1931). https://doi.org/10.3389/fmicb.2019.01931

Purwanto, & Supriyadi. (2014). Biologi Tanah Kajian Pengelolaan Tanah Selaras Alam. Pohon Cahaya. ISBN: 978-602-1542-86-6.

Purwanto, P., Hartati, S., & Istiqomah, S. (2014). Pengaruh kualitas dan dosis seresah terhadap potensial nitrifikasi tanah dan hasil jagung manis. Sains Tanah-Journal of Soil Science and Agroclimatology, 11(1), 11-20. https://doi.org/10.15608/stjssa.v11i1.204

Rahman, M. M., Tsukamoto, J., Rahman, M. M., Yoneyama, A., & Mostafa, K. M. (2013). Lignin and its effects on litter decomposition in forest ecosystems. Chemistry and Ecology, 29(6), 540-553. https://doi.org/10.1080/02757540.2013.790380

Rajamuddin, U. A., Lopulisa, C., Husni, H., & Nathan, M. (2013). Mineralogy and Micromorphology Characteristic of Vertisol Lying on Limestone Parent Rocks at Jeneponto District of South Sulawesi Province, Indonesia. International Journal of Agriculture System, 1(2), 92-97. http://pasca.unhas.ac.id/ojs/index.php/ijas/article/view/9

Ransom, C. J., Jolley, V. D., Blair, T. A., Sutton, L. E., & Hopkins, B. G. (2020). Nitrogen release rates from slow- and controlled-release fertilizers influenced by placement and temperature. PLOS ONE, 15(6), e0234544. https://doi.org/10.1371/journal.pone.0234544

Roviqowati, F., Purwanto, P., & Hartati, S. (2014). Dinamika N-Mineral Tanah Vertisols pada Berbagai Kombinasi Kualitas Seresah serta Serapan N Jagung Manis [litter quality; NH4+ and NO3- dynamics; sweet maize N uptake; Vertisols N-Mineral]. Sains Tanah - Journal of Soil Science and Agroclimatology, 11(1). https://doi.org/10.15608/stjssa.v11i1.206

Ruser, R., & Schulz, R. (2015). The effect of nitrification inhibitors on the nitrous oxide (N2O) release from agricultural soils—a review. Journal of Plant Nutrition and Soil Science, 178(2), 171-188. https://doi.org/10.1002/jpln.201400251

Ryals, R., Kaiser, M., Torn, M. S., Berhe, A. A., & Silver, W. L. (2014). Impacts of organic matter amendments on carbon and nitrogen dynamics in grassland soils. Soil Biology and Biochemistry, 68, 52-61. https://doi.org/10.1016/j.soilbio.2013.09.011

Sanders, T., & Laanbroek, H. J. (2018). The distribution of sediment and water column nitrification potential in the hyper-turbid Ems estuary. Aquatic Sciences, 80(4), 33. https://doi.org/10.1007/s00027-018-0584-1

Scherer, H., Feils, E., & Beuters, P. (2014). Ammonium fixation and release by clay minerals as influenced by potassium. Plant, Soil and Environment, 60(7), 325-331. https://doi.org/10.17221/202/2014-PSE

Sofyan, E. T., Machfud, Y., Yeni, H., & Herdiansyah, G. (2019). Absorption of N, P and K Nutrients of Sweet Corn Plants (Zea Mays Saccharata Sturt) Due to the Application of Urea, Sp-36, Kcl Fertilizers and Biofertilizer on Fluventic Eutrudepts from Jatinangor. Jurnal Agrotek Indonesia (Indonesian Journal of Agrotech), 4(1). https://doi.org/10.33661/jai.v4i1.1690

Tabri, F., Aqil, M., & Efendi, R. (2018). Uji aplikasi berbagai tingkat dosis pupuk ZA terhadap produktivitas dan mutu jagung. 2018, 4(1), 15. https://doi.org/10.26858/ijfs.v4i1.6012

Urakawa, R., Ohte, N., Shibata, H., Isobe, K., Tateno, R., Oda, T., Hishi, T., Fukushima, K., Inagaki, Y., Hirai, K., Oyanagi, N., Nakata, M., Toda, H., Kenta, T., Kuroiwa, M., Watanabe, T., Fukuzawa, K., Tokuchi, N., Ugawa, S., Enoki, T., Nakanishi, A., Saigusa, N., Yamao, Y., & Kotani, A. (2016). Factors contributing to soil nitrogen mineralization and nitrification rates of forest soils in the Japanese archipelago. Forest Ecology and Management, 361, 382-396. https://doi.org/10.1016/j.foreco.2015.11.033

Veresoglou, S. D. (2012). Arbuscular Mycorrhiza Prevents Suppression of Actual Nitrification Rates in the (Myco-) Rhizosphere of Plantago lanceolata. Pedosphere, 22(2), 225-229. https://doi.org/10.1016/S1002-0160(12)60009-5

Wang, C., Wang, N., Zhu, J., Liu, Y., Xu, X., Niu, S., Yu, G., Han, X., & He, N. (2018). Soil gross N ammonification and nitrification from tropical to temperate forests in eastern China. Functional Ecology, 32(1), 83-94. https://doi.org/10.1111/1365-2435.13024

Ward, B. B. (2011). Chapter thirteen - Measurement and Distribution of Nitrification Rates in the Oceans. In M. G. Klotz (Ed.), Methods in Enzymology (Vol. 486, pp. 307-323). Academic Press. https://doi.org/10.1016/B978-0-12-381294-0.00013-4

Wardhani, W. S., & Kusumastuti, P. (2014). DESCRIBING THE HEIGHT GROWTH OF CORN USING LOGISTIC AND GOMPERTZ MODEL. 2014, 35(3), 5. https://doi.org/10.17503/agrivita.v35i3.358

Wati, A. S. P., Pambayun, L. P. S., Purwanto, Hartati, S., & Supriyadi. (2020). Effectiveness of Nitrification Inhibition through Addition of Local Litter to Corn Plants in Andisols. Modern Applied Science. https://doi.org/10.5539/mas.v14n7p120

Xue, Z., & An, S. (2018). Changes in Soil Organic Carbon and Total Nitrogen at a Small Watershed Scale as the Result of Land Use Conversion on the Loess Plateau. Sustainability, 10(12), 4757. https://doi.org/10.3390/su10124757

Yao, H., Gao, Y., Nicol, G. W., Campbell, C. D., Prosser, J. I., Zhang, L., Han, W., & Singh, B. K. (2011). Links between Ammonia Oxidizer Community Structure, Abundance, and Nitrification Potential in Acidic Soils. Applied and Environmental Microbiology, 77(13), 4618-4625. https://doi.org/10.1128/AEM.00136-11

Yu, W.-T., Xu, Y.-G., Bi, M.-L., Ma, Q., & Zhou, H. (2010). Activity and Composition of Ammonia-Oxidizing Bacteria in an Aquic Brown Soil as Influenced by Land Use and Fertilization. Pedosphere, 20(6), 789-798. https://doi.org/10.1016/S1002-0160(10)60069-0

Zhang, X., Wang, Q., Xu, J., Gilliam, F. S., Tremblay, N., & Li, C. (2015). In Situ Nitrogen Mineralization, Nitrification, and Ammonia Volatilization in Maize Field Fertilized with Urea in Huanghuaihai Region of Northern China. PLOS ONE, 10(1), e0115649. https://doi.org/10.1371/journal.pone.0115649

Refbacks

  • There are currently no refbacks.