Applications of synthetic microbial communities platform through plant growth-promoting traits to enhance ecological functions in sustainable agriculture

Chanchao Chem, Sreyneang Nhim, Thev Pol, Sreylen Meas, Eneang Ourn, Techchheng San, Channa Nget, Tsukasa Ito

Abstract

Synthetic microbial communities (SynCom) present a promising strategy for sustainably enhancing agricultural productivity and ecological resilience. This review critically discusses recent advancements in applying SynCom within agricultural ecosystems and highlights their practical benefits for economic sustainability. Plant growth-promoting (PGP) traits are essential for developing SynCom, as they enhance plant growth, increase nutrient uptake, improve stress tolerance, and support resistance to pathogens. SynCom demonstrates significant effectiveness as a biofertilizer, substantially improving soil health and crop yields through enhanced nutrient cycling and bioavailability. Its role as a biopesticide is also significant, as it offers an eco-friendly approach to insect pest management. The integration of SynCom into agricultural practices has proven to enhance plant disease resistance, significantly contributing to crop resilience. Moreover, SynCom plays a vital role in maintaining soil fertility, promoting carbon sequestration, and mitigating the impacts of climate change. Its applications extend to environmental remediation, where it effectively degrades hazardous pollutants in agricultural soils and efficiently processes lignocellulosic biomass, supporting sustainable biomass utilization. SynCom offers considerable advantages but also faces challenges, including community stability, environmental adaptability, and regulatory concerns. Future research efforts aim to address these limitations and enhance SynCom's efficacy regarding long-term agricultural sustainability. Our review provides valuable insights for policymakers, practitioners, and researchers to construct SynCom-based strategies that promote plant growth, enhance sustainable agriculture, and support environmental conservation.

Keywords

Agricultural sustainability; Eco-friendly approach; Environmental adaptability; Plant Growth-Promoting Traits; Synthetic Microbial Communities

Full Text:

PDF

References

Afanador-Barajas, L. N., Navarro-Noya, Y. E., Luna-Guido, M. L., & Dendooven, L. (2021). Impact of a bacterial consortium on the soil bacterial community structure and maize (Zea mays L.) cultivation. Scientific Reports, 11(1), 13092. https://doi.org/10.1038/s41598-021-92517-0

Alneyadi, A. H., Rauf, M. A., & Ashraf, S. S. (2018). Oxidoreductases for the remediation of organic pollutants in water – a critical review. Critical Reviews in Biotechnology, 38(7), 971-988. https://doi.org/10.1080/07388551.2017.1423275

Ammar, E. E., Rady, H. A., Khattab, A. M., Amer, M. H., Mohamed, S. A., Elodamy, N. I., . . . Aioub, A. A. A. (2023). A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. Environmental Science and Pollution Research, 30(53), 113119-113137. https://doi.org/10.1007/s11356-023-30260-x

Bhatt, P., Zhou, X., Huang, Y., Zhang, W., & Chen, S. (2021). Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of Hazardous Materials, 411, 125026. https://doi.org/10.1016/j.jhazmat.2020.125026

Bombardi, L., Salini, A., Aulitto, M., Zuliani, L., Andreolli, M., Bordoli, P., . . . Fusco, S. (2024). Lignocellulolytic Potential of Microbial Consortia Isolated from a Local Biogas Plant: The Case of Thermostable Xylanases Secreted by Mesophilic Bacteria. International Journal of Molecular Sciences, 25(2), 1090. https://doi.org/10.3390/ijms25021090

Buryska, T., Babkova, P., Vavra, O., Damborsky, J., & Prokop, Z. (2018). A Haloalkane Dehalogenase from a Marine Microbial Consortium Possessing Exceptionally Broad Substrate Specificity. Applied and Environmental Microbiology, 84(2), e01684-01617. https://doi.org/10.1128/AEM.01684-17

Chaudhary, P., Xu, M., Ahamad, L., Chaudhary, A., Kumar, G., Adeleke, B. S., . . . Abou Fayssal, S. (2023). Application of Synthetic Consortia for Improvement of Soil Fertility, Pollution Remediation, and Agricultural Productivity: A Review. Agronomy, 13(3), 643. https://doi.org/10.3390/agronomy13030643

Chem, C. (2025). Towards sustainable agriculture through synthetic microbial communities: beyond multifunctional roles, integrated applications, and ecological considerations. Soil Science Annual, 76(2), 1-17. https://doi.org/10.37501/soilsa/206906

Chem, C., Eslamloo, G., & Ito, T. (2025). Insecticidal efficacy of non-Bt bacterial strains against diamondback moth, Plutella xylostella (L.). Frontiers in Sustainable Food Systems, Volume 9 - 2025. https://doi.org/10.3389/fsufs.2025.1591114

Chen, Q., Song, Y., An, Y., Lu, Y., & Zhong, G. (2024). Soil Microorganisms: Their Role in Enhancing Crop Nutrition and Health. Diversity, 16(12), 734. https://doi.org/10.3390/d16120734

Chiaranunt, P., & White, J. F. (2023). Plant Beneficial Bacteria and Their Potential Applications in Vertical Farming Systems. Plants, 12(2), 400. https://doi.org/10.3390/plants12020400

Chlebek, D., Grebtsova, V., Piński, A., Żur-Pińska, J., & Hupert-Kocurek, K. (2022). Genetic Determinants of Antagonistic Interactions and the Response of New Endophytic Strain Serratia quinivorans KP32 to Fungal Phytopathogens. International Journal of Molecular Sciences, 23(24), 15561. https://doi.org/10.3390/ijms232415561

Chowhan, L. B., Mir, M. I., Sabra, M. A., El-Habbab, A. A., & Kiran Kumar, B. (2023). Plant growth promoting and antagonistic traits of bacteria isolated from forest soil samples. Iran J Microbiol, 15(2), 278-289. https://doi.org/10.18502/ijm.v15i2.12480

Cueva-Yesquén, L. G., Goulart, M. C., Attili de Angelis, D., Nopper Alves, M., & Fantinatti-Garboggini, F. (2021). Multiple Plant Growth-Promotion Traits in Endophytic Bacteria Retrieved in the Vegetative Stage From Passionflower. Frontiers in Plant Science, Volume 11 - 2020. https://doi.org/10.3389/fpls.2020.621740

de Souza, R. S. C., Armanhi, J. S. L., & Arruda, P. (2020). From Microbiome to Traits: Designing Synthetic Microbial Communities for Improved Crop Resiliency [Perspective]. Frontiers in Plant Science, Volume 11 - 2020. https://doi.org/10.3389/fpls.2020.01179

Denaya, S., Yulianti, R., Pambudi, A., & Effendi, Y. (2021). Novel microbial consortium formulation as plant growth promoting bacteria (PGPB) agent. IOP Conference Series: Earth and Environmental Science, 637(1), 012030. https://doi.org/10.1088/1755-1315/637/1/012030

Devi, A. R., Sharma, G. D., Majumdar, P. B., & Pandey, P. (2018). A multispecies consortium of bacteria having plant growth promotion and antifungal activities, for the management of Fusarium wilt complex disease in potato (Solanum tuberosum L.). Biocatalysis and Agricultural Biotechnology, 16, 614-624. https://doi.org/10.1016/j.bcab.2018.10.003

Devi, N. S. A., & Balachandar, D. (2022). Synthetic microbial community (SynCom) for sustainable agriculture. Indian Journal of Plant Genetic Resources, 35(3), 351-354. https://doi.org/10.5958/0976-1926.2022.00098.5

Devi, R., Alsaffar, M. F., Al-Taey, D. K. A., Kumar, S., Negi, R., Sharma, B., . . . Ahluwalia, A. S. (2024). Synergistic effect of minerals solubilizing and siderophores producing bacteria as different microbial consortium for growth and nutrient uptake of oats (Avena sativa L.). Vegetos, 37(5), 1863-1875. https://doi.org/10.1007/s42535-024-00922-3

Devi, R., Alsaffar, M. F., Al-Taey, D. K. A., Kumar, S., Negi, R., Sharma, B., . . . Ahluwalia, A. S. (2025). Effect of indigenous mineral availing microbial consortia and cattle manure combination for growth of maize (Zea mays L.). Vegetos, 38(4), 1380-1391. https://doi.org/10.1007/s42535-024-00897-1

Dhaliwal, S. S., Dubey, S. K., Kumar, D., Toor, A. S., Walia, S. S., Randhawa, M. K., . . . Shivey, Y. S. (2024). Enhanced Organic Carbon Triggers Transformations of Macronutrients, Micronutrients, and Secondary Plant Nutrients and Their Dynamics in the Soil under Different Cropping Systems-A Review. Journal of Soil Science and Plant Nutrition, 24(3), 5272-5292. https://doi.org/10.1007/s42729-024-01907-6

Di Giulio, R. T., Benson, W. H., Sanders, B. M., & Van Veld, P. A. (2020). Biochemical mechanisms: metabolism, adaptation, and toxicity. In G. M. Rand (Ed.), Fundamentals of aquatic toxicology (2nd ed., pp. 523-561). CRC Press. https://doi.org/10.1201/9781003075363-20

Dobrzyński, J., Kulkova, I., Jakubowska, Z., & Wróbel, B. (2025). Non-native PGPB consortium consisting of Pseudomonas sp. G31 and Azotobacter sp. PBC2 promoted winter wheat growth and slightly altered the native bacterial community. Scientific Reports, 15(1), 3248. https://doi.org/10.1038/s41598-025-86820-3

Donald, L., Pipite, A., Subramani, R., Owen, J., Keyzers, R. A., & Taufa, T. (2022). Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiology Research, 13(3), 418-465. https://doi.org/10.3390/microbiolres13030031

Dunlap, C. A., Bowman, M. J., & Rooney, A. P. (2019). Iturinic Lipopeptide Diversity in the Bacillus subtilis Species Group – Important Antifungals for Plant Disease Biocontrol Applications. Frontiers in Microbiology, Volume 10 - 2019. https://doi.org/10.3389/fmicb.2019.01794

El Hamss, H., Radouane, N., Belabess, Z., & Lahlali, R. (2023). Microbial Consortia: An Approach to Enhance the Effectiveness of Beneficial Soil Microbes. In M. R. Khan (Ed.), Novel Biological and Biotechnological Applications in Plant Nematode Management (pp. 133-166). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-2893-4_6

Fan, D., & Smith, D. L. (2021). Characterization of Selected Plant Growth-Promoting Rhizobacteria and Their Non-Host Growth Promotion Effects. Microbiology Spectrum, 9(1), 10.1128/spectrum.00279-00221. https://doi.org/10.1128/spectrum.00279-21

Fischer, S., Príncipe, A., Alvarez, F., Cordero, P., Castro, M., Godino, A., . . . Mori, G. (2013). Fighting Plant Diseases Through the Application of Bacillus and Pseudomonas Strains. In R. Aroca (Ed.), Symbiotic Endophytes (pp. 165-193). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39317-4_9

Gad, S., Ayakar, S., & Adivarekar, R. (2024). Formulation and characterization of bacterial consortium for efficient lignocellulosic waste degradation. Journal of Environmental Chemical Engineering, 12(3), 112619. https://doi.org/10.1016/j.jece.2024.112619

Hansen, M. L., Dénes, Z., Jarmusch, S. A., Wibowo, M., Lozano-Andrade, C. N., Kovács, Á. T., . . . Jelsbak, L. (2024). Resistance towards and biotransformation of a Pseudomonas-produced secondary metabolite during community invasion. The ISME Journal, 18(1). https://doi.org/10.1093/ismejo/wrae105

Ikhwan, A., Iriany, A., Ishartati, E., & Hasanah, F. (2021). Formulation of bacterial consortium for improvement growth and yield of maize (Zea mays L.). Sains Tanah Journal of Soil Science and Agroclimatology, 18(1), 9. https://doi.org/10.20961/stjssa.v18i1.46003

Jaroszuk-Ściseł, J., Tyśkiewicz, R., Nowak, A., Ozimek, E., Majewska, M., Hanaka, A., . . . Janusz, G. (2019). Phytohormones (Auxin, Gibberellin) and ACC Deaminase In Vitro Synthesized by the Mycoparasitic Trichoderma DEMTkZ3A0 Strain and Changes in the Level of Auxin and Plant Resistance Markers in Wheat Seedlings Inoculated with this Strain Conidia. International Journal of Molecular Sciences, 20(19), 4923. https://doi.org/10.3390/ijms20194923

Jing, J., Garbeva, P., Raaijmakers, J. M., & Medema, M. H. (2024). Strategies for tailoring functional microbial synthetic communities. The ISME Journal, 18(1). https://doi.org/10.1093/ismejo/wrae049

Johns, N. I., Blazejewski, T., Gomes, A. L. C., & Wang, H. H. (2016). Principles for designing synthetic microbial communities. Current Opinion in Microbiology, 31, 146-153. https://doi.org/10.1016/j.mib.2016.03.010

Jumpathong, W., Intra, B., Euanorasetr, J., & Wanapaisan, P. (2022). Biosurfactant-Producing Bacillus velezensis PW192 as an Anti-Fungal Biocontrol Agent against Colletotrichum gloeosporioides and Colletotrichum musae. Microorganisms, 10(5), 1017. https://doi.org/10.3390/microorganisms10051017

Kabir, A. H., Baki, M. Z. I., Ahmed, B., & Mostofa, M. G. (2024). Current, faltering, and future strategies for advancing microbiome-assisted sustainable agriculture and environmental resilience. New Crops, 1, 100013. https://doi.org/10.1016/j.ncrops.2024.100013

Kapadia, C., Sayyed, R. Z., El Enshasy, H. A., Vaidya, H., Sharma, D., Patel, N., . . . Zuan, A. T. K. (2021). Halotolerant Microbial Consortia for Sustainable Mitigation of Salinity Stress, Growth Promotion, and Mineral Uptake in Tomato Plants and Soil Nutrient Enrichment. Sustainability, 13(15), 8369. https://doi.org/10.3390/su13158369

Karkaria, B. D., Fedorec, A. J. H., & Barnes, C. P. (2021). Automated design of synthetic microbial communities. Nature Communications, 12(1), 672. https://doi.org/10.1038/s41467-020-20756-2

Kaspar, F., Neubauer, P., & Gimpel, M. (2019). Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. Journal of Natural Products, 82(7), 2038-2053. https://doi.org/10.1021/acs.jnatprod.9b00110

Kaur, S., Egidi, E., Qiu, Z., Macdonald, C. A., Verma, J. P., Trivedi, P., . . . Singh, B. K. (2022). Synthetic community improves crop performance and alters rhizosphere microbial communities. Journal of Sustainable Agriculture and Environment, 1(2), 118-131. https://doi.org/10.1002/sae2.12017

Kaur, T., Devi, R., Negi, R., Kumar, S., Singh, S., Rustagi, S., . . . Yadav, A. N. (2024). Microbial consortium with multifunctional attributes for the plant growth of eggplant (Solanum melongena L.). Folia Microbiologica, 69(6), 1255-1266. https://doi.org/10.1007/s12223-024-01168-x

Khan, M. Y., Nadeem, S. M., Sohaib, M., Waqas, M. R., Alotaibi, F., Ali, L., . . . Al-Barakah, F. N. I. (2022). Potential of plant growth promoting bacterial consortium for improving the growth and yield of wheat under saline conditions. Frontiers in Microbiology, Volume 13 - 2022. https://doi.org/10.3389/fmicb.2022.958522

Korneykova, M., Vasenev, V., Kozlova, E., Soshina, A., Nikitin, D., Dolgikh, A., & Saltan, N. (2024). Microbial communities of urban and industrial polluted soils in the Russian Arctic. Geoderma Regional, 39, e00890. https://doi.org/10.1016/j.geodrs.2024.e00890

Kumar, A., & Verma, J. P. (2019). The Role of Microbes to Improve Crop Productivity and Soil Health. In V. Achal & A. Mukherjee (Eds.), Ecological Wisdom Inspired Restoration Engineering (pp. 249-265). Springer Singapore. https://doi.org/10.1007/978-981-13-0149-0_14

Lin, H.-H., Torres, M., Adams, C. A., Andeer, P. F., Owens, T. K., Zhalnina, K., . . . Mortimer, J. C. (2024). Impact of Inoculation Practices on Microbiota Assembly and Community Stability in a Fabricated Ecosystem. Phytobiomes Journal, 8(2), 155-167. https://doi.org/10.1094/pbiomes-06-23-0050-r

Lin, L. (2022). Bottom-up synthetic ecology study of microbial consortia to enhance lignocellulose bioconversion. Biotechnology for Biofuels and Bioproducts, 15(1), 14. https://doi.org/10.1186/s13068-022-02113-1

Lindström, K., & Mousavi, S. A. (2020). Effectiveness of nitrogen fixation in rhizobia. Microbial Biotechnology, 13(5), 1314-1335. https://doi.org/10.1111/1751-7915.13517

Liu, J., Zhou, X., Wang, T., Fan, L., Liu, S., Wu, N., . . . Dong, W. (2022). Construction and comparison of synthetic microbial consortium system (SMCs) by non-living or living materials immobilization and application in acetochlor degradation. Journal of Hazardous Materials, 438, 129460. https://doi.org/10.1016/j.jhazmat.2022.129460

Lü, H., Wei, J.-L., Tang, G.-X., Chen, Y.-S., Huang, Y.-H., Hu, R., . . . Li, Q. X. (2024). Microbial consortium degrading of organic pollutants: Source, degradation efficiency, pathway, mechanism and application. Journal of Cleaner Production, 451, 141913. https://doi.org/10.1016/j.jclepro.2024.141913

Luo, D.-L., Huang, S.-Y., Ma, C.-Y., Zhang, X.-Y., Sun, K., Zhang, W., & Dai, C.-C. (2024). Seed-borne bacterial synthetic community resists seed pathogenic fungi and promotes plant growth. Journal of Applied Microbiology, 135(4). https://doi.org/10.1093/jambio/lxae073

Lyu, H., Li, Y., Wang, Y., Wang, P., Shang, Y., Yang, X., . . . Yu, A. (2024). Drive soil nitrogen transformation and improve crop nitrogen absorption and utilization - a review of green manure applications [Review]. Frontiers in Plant Science, Volume 14 - 2023. https://doi.org/10.3389/fpls.2023.1305600

Ma, C.-Y., Zhang, W., Luo, D.-L., Jiang, H.-J., Wu, X.-H., Sun, K., & Dai, C.-C. (2023). Fungal endophyte promotes plant growth and disease resistance of Arachis hypogaea L. by reshaping the core root microbiome under monocropping conditions. Microbiological Research, 277, 127491. https://doi.org/10.1016/j.micres.2023.127491

Malla, M. A., Dubey, A., Kumar, A., Patil, A., Ahmad, S., Kothari, R., & Yadav, S. (2023). Optimization and elucidation of organophosphorus and pyrethroid degradation pathways by a novel bacterial consortium C3 using RSM and GC-MS-based metabolomics. Journal of the Taiwan Institute of Chemical Engineers, 144, 104744. https://doi.org/10.1016/j.jtice.2023.104744

Misra, S., Semwal, P., Pandey, D. D., Mishra, S. K., & Chauhan, P. S. (2024). Siderophore-Producing Spinacia Oleracea Bacterial Endophytes Enhance Nutrient Status and Vegetative Growth Under Iron-Deficit Conditions. Journal of Plant Growth Regulation, 43(5), 1317-1330. https://doi.org/10.1007/s00344-023-11185-8

Mukherjee, A., Chouhan, G. K., Gaurav, A. K., Jaiswal, D. K., & Verma, J. P. (2021). Chapter 9 - Development of indigenous microbial consortium for biocontrol management. In J. P. Verma, C. A. Macdonald, V. K. Gupta, & A. R. Podile (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 91-104). Elsevier. https://doi.org/10.1016/B978-0-444-64325-4.00009-2

Nargotra, P., Sharma, V., Lee, Y.-C., Tsai, Y.-H., Liu, Y.-C., Shieh, C.-J., . . . Kuo, C.-H. (2023). Microbial Lignocellulolytic Enzymes for the Effective Valorization of Lignocellulosic Biomass: A Review. Catalysts, 13(1), 83. https://doi.org/10.3390/catal13010083

Olanrewaju, O. S., & Babalola, O. O. (2019). Bacterial Consortium for Improved Maize (Zea mays L.) Production. Microorganisms, 7(11), 519. https://doi.org/10.3390/microorganisms7110519

Pang, S., Lin, Z., Chen, W.-J., Chen, S.-F., Huang, Y., Lei, Q., . . . Wang, H. (2023). High-efficiency degradation of methomyl by the novel bacterial consortium MF0904: Performance, structural analysis, metabolic pathways, and environmental bioremediation. Journal of Hazardous Materials, 452, 131287. https://doi.org/10.1016/j.jhazmat.2023.131287

Pathma, J., Kennedy, R. K., Bhushan, L. S., Shankar, B. K., & Thakur, K. (2021). Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. In R. Prasad, V. Kumar, J. Singh, & C. P. Upadhyaya (Eds.), Recent Developments in Microbial Technologies (pp. 39-69). Springer Nature Singapore. https://doi.org/10.1007/978-981-15-4439-2_2

Pattani, V., Kaneriya, J., Joshi, K., Gandhi, D., & Sanghvi, G. (2023). Effect of Growth-promoting Bacterial Consortia on Overall Growth of Tomato Plants. Applied Biochemistry and Microbiology, 59(4), 511-521. https://doi.org/10.1134/S0003683823040105

Pérez-Moncada, U. A., Santander, C., Ruiz, A., Vidal, C., Santos, C., & Cornejo, P. (2024). Design of Microbial Consortia Based on Arbuscular Mycorrhizal Fungi, Yeasts, and Bacteria to Improve the Biochemical, Nutritional, and Physiological Status of Strawberry Plants Growing under Water Deficits. Plants, 13(11), 1556. https://doi.org/10.3390/plants13111556

Raklami, A., Bechtaoui, N., Tahiri, A.-i., Anli, M., Meddich, A., & Oufdou, K. (2019). Use of Rhizobacteria and Mycorrhizae Consortium in the Open Field as a Strategy for Improving Crop Nutrition, Productivity and Soil Fertility. Frontiers in Microbiology, Volume 10 - 2019. https://doi.org/10.3389/fmicb.2019.01106

Rasheela, A. R. P., Khalid, M. F., Abumaali, D. A., Alatalo, J. M., & Ahmed, T. (2024). Impact of Abiotic Stressors on Soil Microbial Communities: A Focus on Antibiotics and Their Interactions with Emerging Pollutants. Soil Systems, 9(1), 2. https://doi.org/10.3390/soilsystems9010002

Raza, A., Hassan, A., Akram, W., Anjum, T., Aftab, Z.-e.-H., & Ali, B. (2024). Seed coating with the synthetic consortium of beneficial Bacillus microbes improves seedling growth and manages Fusarium wilt disease. Scientia Horticulturae, 325, 112645. https://doi.org/10.1016/j.scienta.2023.112645

Santoyo, G., Guzmán-Guzmán, P., Parra-Cota, F. I., Santos-Villalobos, S. d. l., Orozco-Mosqueda, M. d. C., & Glick, B. R. (2021). Plant Growth Stimulation by Microbial Consortia. Agronomy, 11(2), 219. https://doi.org/10.3390/agronomy11020219

Seenivasagan, R., & Babalola, O. O. (2021). Utilization of Microbial Consortia as Biofertilizers and Biopesticides for the Production of Feasible Agricultural Product. Biology, 10(11), 1111. https://doi.org/10.3390/biology10111111

Sehrawat, A., Sindhu, S. S., & Glick, B. R. (2022). Hydrogen cyanide production by soil bacteria: Biological control of pests and promotion of plant growth in sustainable agriculture. Pedosphere, 32(1), 15-38. https://doi.org/10.1016/S1002-0160(21)60058-9

Sembiring, M., Hutahuruk, J. M., Susilowati, D. N., Yuniarti, E., Sabrina, T., & Siregar, L. A. M. (2024). Functional diversity of bacteria in various saline soil plant vegetations around Sialang Buah Coast, North Sumatra, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 21(2), 9. https://doi.org/10.20961/stjssa.v21i2.80075

Shayanthan, A., Ordoñez, P. A. C., & Oresnik, I. J. (2022). The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture [Review]. Frontiers in Agronomy, Volume 4 - 2022. https://doi.org/10.3389/fagro.2022.896307

Shetty, S. S., D, D., S, H., Sonkusare, S., Naik, P. B., Kumari N, S., & Madhyastha, H. (2023). Environmental pollutants and their effects on human health. Heliyon, 9(9), e19496. https://doi.org/10.1016/j.heliyon.2023.e19496

Shikata, A., Sermsathanaswadi, J., Thianheng, P., Baramee, S., Tachaapaikoon, C., Waeonukul, R., . . . Kosugi, A. (2018). Characterization of an Anaerobic, Thermophilic, Alkaliphilic, High Lignocellulosic Biomass-Degrading Bacterial Community, ISHI-3, Isolated from Biocompost. Enzyme and Microbial Technology, 118, 66-75. https://doi.org/10.1016/j.enzmictec.2018.07.001

Shilev, S., Babrikova, I., & Babrikov, T. (2020). Consortium of plant growth-promoting bacteria improves spinach (Spinacea oleracea L.) growth under heavy metal stress conditions. Journal of Chemical Technology & Biotechnology, 95(4), 932-939. https://doi.org/10.1002/jctb.6077

Singh, D., Jadon, K. S., Verma, A., Geat, N., Sharma, R., Meena, K. K., & Kakani, R. K. (2025). Formulations of synergistic microbial consortia for enhanced systemic resistance against Fusarium wilt in cumin. International Microbiology, 28(3), 497-523. https://doi.org/10.1007/s10123-024-00553-3

Singh, M., Kumar, J., Singh, S., Singh, V. P., & Prasad, S. M. (2015). Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in Environmental Science and Bio/Technology, 14(3), 407-426. https://doi.org/10.1007/s11157-015-9372-8

Spescha, A., Weibel, J., Wyser, L., Brunner, M., Hess Hermida, M., Moix, A., . . . Maurhofer, M. (2023). Combining entomopathogenic Pseudomonas bacteria, nematodes and fungi for biological control of a below-ground insect pest. Agriculture, Ecosystems & Environment, 348, 108414. https://doi.org/10.1016/j.agee.2023.108414

Suntoro, S., Herdiansyah, G., & Mujiyo, M. (2024). Nutrient status and soil fertility index as a basis for sustainable rice field management in Madiun Regency, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 21(1), 10. https://doi.org/10.20961/stjssa.v21i1.73845

Swiontek Brzezinska, M., Świątczak, J., Wojciechowska, A., Burkowska-But, A., & Kalwasińska, A. (2022). Consortium of plant growth-promoting rhizobacteria enhances oilseed rape (Brassica napus L.) growth under normal and saline conditions. Archives of Microbiology, 204(7), 393. https://doi.org/10.1007/s00203-022-03018-1

Tan, S.-Q., Yin, Y., Cao, K.-L., Zhao, X.-X., Wang, X.-Y., Zhang, Y.-X., & Shi, W.-P. (2021). Effects of a combined infection with Paranosema locustae and Beauveria bassiana on Locusta migratoria and its gut microflora. Insect Science, 28(2), 347-354. https://doi.org/10.1111/1744-7917.12776

Tariq, A., Guo, S., Farhat, F., & Shen, X. (2025). Engineering Synthetic Microbial Communities: Diversity and Applications in Soil for Plant Resilience. Agronomy, 15(3), 513. https://doi.org/10.3390/agronomy15030513

Thomas-Barry, G., Martin, C. S., Ramsubhag, A., Eudoxie, G., & Miller, J. R. (2024). Multi-trait efficiency and interactivity of bacterial consortia used to enhance plant performance under water stress conditions. Microbiological Research, 281, 127610. https://doi.org/10.1016/j.micres.2024.127610

Turino Mattos, M. L., Valgas, R. A., & Martins, J. F. d. S. (2023). Coinoculation with Growth-Promoting Bacteria Increases the Efficiency of Nitrogen Use by Irrigated Rice. ACS Omega, 8(51), 48719-48727. https://doi.org/10.1021/acsomega.3c05339

Ünlü, E., Yilmaz, S., Yetişir, H., Karim, A. A., Gün, B., & Idris, A. B. (2024). Characterization of multi-trait plant growth-promoting rhizobacteria isolated from alfalfa rhizosphere and evaluation of their efficacy on tomato and watermelon growth. Discover Agriculture, 2(1), 117. https://doi.org/10.1007/s44279-024-00125-z

Vandana, Priyadarshanee, M., & Das, S. (2023). Bacterial extracellular polymeric substances: Biosynthesis and interaction with environmental pollutants. Chemosphere, 332, 138876. https://doi.org/10.1016/j.chemosphere.2023.138876

Vega-Celedón, P., Bravo, G., Velásquez, A., Cid, F. P., Valenzuela, M., Ramírez, I., . . . Seeger, M. (2021). Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms, 9(3), 538. https://doi.org/10.3390/microorganisms9030538

Vincze, É.-B., Becze, A., Laslo, É., & Mara, G. (2024). Beneficial Soil Microbiomes and Their Potential Role in Plant Growth and Soil Fertility. Agriculture, 14(1), 152. https://doi.org/10.3390/agriculture14010152

Wahba, M. M., & Zaghloul, A. M. (2024). Effect of soil properties on phosphate desorption from some cultivated soils in arid region. Sains Tanah Journal of Soil Science and Agroclimatology, 21(1), 10. https://doi.org/10.20961/stjssa.v21i1.79310

Wang, H., Liu, R., You, M. P., Barbetti, M. J., & Chen, Y. (2021). Pathogen Biocontrol Using Plant Growth-Promoting Bacteria (PGPR): Role of Bacterial Diversity. Microorganisms, 9(9), 1988. https://doi.org/10.3390/microorganisms9091988

Wang, X., Chi, Y., & Song, S. (2024). Important soil microbiota's effects on plants and soils: a comprehensive 30-year systematic literature review [Review]. Frontiers in Microbiology, Volume 15 - 2024. https://doi.org/10.3389/fmicb.2024.1347745

Wang, Y., Liu, H., Shen, Z., Miao, Y., Wang, J., Jiang, X., . . . Li, R. (2022). Richness and antagonistic effects co-affect plant growth promotion by synthetic microbial consortia. Applied Soil Ecology, 170, 104300. https://doi.org/10.1016/j.apsoil.2021.104300

White, P. J., & Brown, P. H. (2010). Plant nutrition for sustainable development and global health. Annals of Botany, 105(7), 1073-1080. https://doi.org/10.1093/aob/mcq085

Wu, D., Wei, Z., Mohamed, T. A., Zheng, G., Qu, F., Wang, F., . . . Song, C. (2022). Lignocellulose biomass bioconversion during composting: Mechanism of action of lignocellulase, pretreatment methods and future perspectives. Chemosphere, 286, 131635. https://doi.org/10.1016/j.chemosphere.2021.131635

Xu, X., Dinesen, C., Pioppi, A., Kovács, Á. T., & Lozano-Andrade, C. N. (2025). Composing a microbial symphony: synthetic communities for promoting plant growth. Trends in Microbiology, 33(7), 738-751. https://doi.org/10.1016/j.tim.2025.01.006

Zhang, J., Liu, Y.-X., Zhang, N., Hu, B., Jin, T., Xu, H., . . . Bai, Y. (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 37(6), 676-684. https://doi.org/10.1038/s41587-019-0104-4

Zhang, T., & Zhang, H. (2022). Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms, 10(2), 261. https://doi.org/10.3390/microorganisms10020261

Zhang, W., Diao, C., & Wang, L. (2023). Degradation of lignin in different lignocellulosic biomass by steam explosion combined with microbial consortium treatment. Biotechnology for Biofuels and Bioproducts, 16(1), 55. https://doi.org/10.1186/s13068-023-02306-2

Zheng, G., Yin, T., Lu, Z., Boboua, S. y. b., Li, J., & Zhou, W. (2020). Degradation of rice straw at low temperature using a novel microbial consortium LTF-27 with efficient ability. Bioresource Technology, 304, 123064. https://doi.org/10.1016/j.biortech.2020.123064

Zhou, J., Liu, Y., Xu, W., Wang, Z., Chen, W., & Hu, Y. (2024). Effect of synthetic microbial communities on rhizosphere and root-endophytic microbiota of soybean. Chinese Journal of Eco-Agriculture, 32(4), 571-581. https://doi.org/10.12357/cjea.20230496

Zhuang, L., Li, Y., Wang, Z., Yu, Y., Zhang, N., Yang, C., . . . Wang, Q. (2021). Synthetic community with six Pseudomonas strains screened from garlic rhizosphere microbiome promotes plant growth. Microbial Biotechnology, 14(2), 488-502. https://doi.org/10.1111/1751-7915.13640

Refbacks

  • There are currently no refbacks.