Pemodelan Kasus Kronis Filariasis di Indonesia Tahun 2019 Menggunakan Geographically Weighted Negative Binomial Regression (GWNBR)

Sri Rahayu Yogyana Sinurat, Ernawati Pasaribu


Filariasis is a mosquito-borne disease caused by filarial worms. In Indonesia, filariasis is the third most common vector-borne and zoonotic disease in the community. Patients who in the chronic stage will fell pain due to swelling and infection in the limbs so that it can ruin the daily activities, reduce work productivity and cause economic losses for both sufferers and the country. In 2019, there were 28 filariasis endemic provinces and only 6 non-endemic provinces. This shows that the treatment of filariasis has not been fully successful. This study aims to determine the general description of chronic cases of filariasis, identify spatial heterogeneity and analyze factors that influence the number of chronic cases of filariasis using GWNBR. The modeling results five provinces groups based on significant variables. Variables that have a significant effect in all provinces are the ratio of health facilities of 100,000 population, the percentage of regions with PHBS policies and the average humidity. Meanwhile, the significant variables in several provinces are the percentage of slum households, the percentage of poor people and the average air temperature.

Keywordsfilariasis; overdispersion; spatial heterogeneity; negative binomial; GWNBR

Full Text:



R. Novita, “Dampak Perubahan Iklim Terhadap Timbulnya Penyakit Tular Nyamuk Terutama Limfatik Filariasis,” Journal of Health Epidemiology and Communicable Diseases, vol. 5, no. 1, pp. 30-39, 2019.

World Heath Organization. “Lymphatic Filariasis: Reporting Continued Progress Towards elimination as a Public Health Problem.” (accessed Juli. 03, 2021).

World Heath Organization. “Lymphatic Filariasis.” (accessed Juli. 03, 2021).

Kementerian Kesehatan RI, Profil Kesehatan Indonesia Tahun 2018. 2019.

P. Mc Cullagh and J. Nelder, Generalized Linear Models Second Edition, London: Chapman & Hall, 1989.

J.M. Hilbe, Negative Binomial Regression, 2nd edition, United Kingdom: Cambridge University Press, 2014.

L. Anselin, Spatial Econometrics: Methods and Models, Dordrecht: Kluwer Academic Publishers, 1998.

A.R. Da Silva and T.C.V. Rodrigues, “Geographically Weigted Negative Binomial Regression-Incorporaitng Overdispersion,” Stat Comput., 2013.

S. Zhangwen, H. Haiqing, T. Muluaalem, W. Guangyu, Z. Aicong, and G. Futao, “Geographically Weighted Negative Binomial Regression Model Predicts Wildfire Occurrence in the Great Xing’an Mountains Better Than Negative Binomial Model,” Forest, vol. 10, no. 377, 2019.

F. Ernawati, “Pemodelan dan Pemetaan Kejadian Diare di Kota Surabaya menggunakan Geographically Weighted Negative Binomial Regression,” Skripsi, Institut Teknologi Sepuluh November, Surabaya, 2015.

Kementerian Kesehatan R, Peraturan Menteri Kesehatan Republik Indonesia Nomor 94 Tahun 2014 tentang Penanggulangan Filariasis. 2014.

Y. Maryen, H. Kusnanto and C. Indriani, “Risk Factors of Lymphatic Filariasis in Manokwari, West Papua,” Jurnal TMJ, vol. 4, no. 1, pp. 60-64, 2017.

S. Santoso, “Risiko Kejadian Filariasis pada Masyarakat dengan Akses Pelayanan Kesehatan yang Sulit,” Jurnal Pembangunan Manusia, vol. 5, no. 2, pp. 107-115, 2011

L. Amaliana and A.A.R. Fernandes, “Comparison of Two Weighting Functions in Geographically Weighted Zero-Inflated Poisson Regression on Filariasis Data,” Journal of Physics Conference Series, vol. 1097, no. 1, 2018.

A.M. Samy, A.H. Elaagip and M.A. Kenawy, “Climate Change Influences on the Global Potential Distribution of the Mosquito Culex quinquefasciatus, Vector of West Nile Virus and Lymphatic Filariasis,” Plos One. vol. 11, no. 10, 2016.

H. Slater and E. Michael, “Mapping, Bayesian Geostatistical Analysis and Spatial Prediction of Lymphatic Filariasis Prevalence in Africa,” PloS One, vol. 8, no. 8, pp. 715-774, 2013.

F.S. Onggang, “Analisis Faktor Faktor Terhadap Kejadian Filariasis Tipe Wuchereria Bancrofti, dan Brugia Malayi di Wilayah Kabupaten Manggarai Timur Tahun 2016,” Jurnal Info Kesehatan, vol. 16, no. 1, pp. 1-20, 2018.


  • There are currently no refbacks.