Penerapan Generalized Cross Validation dalam Model Regresi Smoothing Spline pada Produksi Ubi Jalar di Jawa Tengah

Trionika Dian Wahyuningsih, Sri Sulistijowati Handajani, Diari Indriati

Abstract

Sweet Potato is a useful plant as a source carbohydrates, proteins, and is used as an animal feed and ingredient industry. Based on data from the Badan Pusat Statistik (BPS), the production fluctuations of the sweet potato in Central Java from year to year are caused by many factor. The production of sweet potato and the factors that affected it if they are described into a pattern of relationships then they do not have a specific pattern and do not follow a particular distribution, such as harvest area, the allocation of subsidized urea fertilizer, and the allocation of subsidized organic fertilizer. Therefore, the production model of sweet potato could be applied into nonparametric regression model. The approach used for nonparametric regression in this study is smoothing spline regression. The method used in regression smoothing spline is generalized cross validation (GCV). The value of the smoothing parameter (λ) is chosen from the minimum GCV value. The results of the study show that the optimum λ value for the factors of harvest area, urea fertilizer and organic fertilizer are 5.57905e-14, 2.51426e-06, and 3.227217e-13 that they result a minimum GCV i.e 2.29272e-21, 1.38391e-16, and 3.46813e-24.

 

Keywords: Sweet potato; nonparametric; smoothing spline; generalized cross validation.

Full Text:

PDF

References

Soekartawi, Agribisnis Teori dan Aplikasi, PT. Raja Grafindo Persada, Jakarta, 1999.

Purwono, Purnamawati, H., Budidaya 8 Jenis Tanaman Pangan, Jakarta: Penebar Swadaya, 2007.

Najwah, I. N., Analisis Efisiensi Usahatani Ubi Jalar (Ipomoea batatas L.) di Kabupaten Karanganyar, Skripsi Fakultas Pertanian, Universitas Sebelas Maret, Surakarta, 2014.

Defri, K., Analisis Pendapatan dan Faktor-faktor yang Memengaruhi Produksi Usahatani Ubi Jalar (Studi Kasus Desa Purwasari, Kecamatan Dramaga, Kabupaten Bogor), Skripsi Fakultas Ekonomi dan Manajemen, Institut Pertanian Bogor, Bogor, 2011.

Aydin, D., A Comparison of The Nonparametric Regression Models Using Smoothing Spline and Kernel Regression, World Academy Science, Enginering and Technology, 2007; (36): 253-257.

Cantoni, E. dan Hastie, T., Degrees of Freedom Tests for Smoothing Splines, Statistics Department, Stanford University, 2000.

Lee, T. C. M., Smoothing Parameter Selection for Smoothing Splines: a Simulation Study, Computational Statistic & Data Analysis, 2003; (42): 139-148.

Eubank, R., Nonparametric Regression and Spline Smoothing. Second Edition, New York: Marcel Dekker, 1999.

Fox, J., Nonparametric Regression [Internet]. 2002 [cited 2009 Jan 24]. Available from: http://cran.r-project.org/doc/contrib/Fox-Companion/appendix-nonparametric-regression.pdf, [cited 2017 Jun 02].

Fahrmeir, L. dan Tuhtz, G., Multivariate Statistical Modelling Based on Generalized Linear Models, Springer-Verlag, New York, 1994.

Refbacks

  • There are currently no refbacks.