Modeling East Java Province Poverty Cases Using Birespon Truncted Spline Regression

Rizka Amalia Putri, Nindya Wulandari, Erlyne Nadhilah Widyaningrum, Morina A. Fathan, Nur Rezky Safitriani

Abstract

An analytical method for determining the relationship between predictor and response variables is regression. For data that shows unidentified patterns, nonparametric regression is a suitable data analysis technique. A nonparametric regression technique is the truncated spline. Due to the widespread use of truncated spline with a single response variable, this study employs biresponse truncated spline, which uses two response variables to produce a better model than single-response modeling. The purpose of this study is to obtain the best model and to identify which variables influence the poverty case in East Java Province using biresponse truncated spline regression. The best knot points were chosen for this investigation using Generalized Cross Validation (GCV). With three knot points and a model goodness of fit () of 95.83%, GCV gives the best modeling results. Applying this model to the East Java Province case of poverty using data on the poverty depth index and the percentage of the population living in poverty in 2023 reveals that the Labor Force Participation Rate (TPAK), Average Years of Schooling (RLS), and Open Unemployment Rate (TPT) all have a significant effect.

Keywords: biresponse truncated spline; nonparametric regression; poverty

References

D. N. Gujarati, Basic Econometric, 4th edition, New York: McGraw-Hill Companies, Inc., 2003.

I. Sriliana, I. N. Budiantara, and V. Ratnasari, “A truncated spline and local linear mixed estimator in nonparametric regression for longitudinal data and its application,” Symmetry, vol. 14, 2022, doi: 10.3390/sym14122687

D. P. Rahmawati, I. N. Budiantara, D. D. Prastyo, and M. A. D. Octavanny, “Mixture spline smoothing and kernel estimator in multiresponse nonparametric regression,” IAENG Int. J. Appl. Math, vol. 51, no. 28, 2021, doi: 10.18517/ijaseit.11.6.14464.

V. Ratnasari, I. N. Budiantara, and A. T. R. Dani, “Nonparametric regression mixed estimators of truncated spline and gaussian kernel based on cross-validation (CV), generalized cross-validation (GCV), and unbiased risk (UBR) methods,” Int. J. Adv. Sci. Eng. Inform. Technol, vol. 11, pp. 2400-2406, 2021, doi: 10.18517/ijaseit.11.6.14464.

S. Sifriyani, S. H. Kartiko, I. N. Budiantara, and G. Gunardi, “Development of nonparametric geographically weighted regression using truncated spline approach,” Songklanakarin J. Sci. Techno., vol. 40, pp. 909-920, 2018, doi: 10.14456/sjst-psu.2018.98.

A. T. R. Dani, L. Ni’matuzzahroh, V. Ratnasari, and I. N Budiantara, “Pemodelan regresi nonparametrik spline truncated pada data longitudinal,” Inferensi, vol.4, no.1, pp. 47, 2021, doi:10.12962/j27213862.v4i1.8737.

R. L Eubank, Nonparametric Regression and Spline Smoothing, Marcel Dekker, Inc., New York., 1999.

E. Montoya, N. Ulloa, and V. Miller, “A simulation study comparing knot selection methods with equally spaced knots in a penalized regression spline”, International Journal of Statistics and Probability, vol. 3, no. 3, 2014.

T. Similia, and J. Tikka, Input Selection and Shrinkage in Multiresponse Linear Regression. Preprint Submitted to Elsevier, 2007.

A. A. R. Fernandes, Estimator Spline dalam Regresi Nonparametrik Birespon untuk Data Longitudinal (Studi Kasus pada Pasien Penderita TB Paru di Malang) (Doctoral dissertation, Institut Teknologi Sepuluh Nopember), 2016.

L. Hidayah, N. Cahmidah, and I. N. Budiantara, “Spline truncated estimator in multiresponse semiparametric regression model for computer based national exam in West Nusa Tenggara,” IOP Conference Series: Materials Science and Engineering, vol. 546, no. 5, pp. 20-29, 2019, doi: 10.1088/1757-899X/546/5/052029.

D. Amelia, Model Regresi Nonparametrik Multirespon Spline Truncated Untuk Data Longitudinal. Tesis Jurusan Statistika FMIPA Institut Teknologi Sepuluh November. Surabaya, 2016.

G. Wahba, Spline Models for Observation Data. Penylvania: SIAM., 1990.

R. L. Eubank, Nonparametric Regression and Spline Smoothing, Marcel Dekker, Inc., New York., 1999.

N. R. Draper, and H. Smith, Applied Regression Analysis. New York: John Wiley & Sons, 1998.

Badan Pusat Statistik, Jumlah penduduk miskin, persentase penduduk miskin dan garis kemiskinan 1970-2013, 2015.

D. Desmawan, A. K. Salsabila, L. Amalia, R. A. Anargya, R. S. Kirana, V. Valentina, “Analisis pengaruh tingkat partisipasi angkatan kerja dan upah minimum provinsi terhadap kemiskinan di Provinsi Banten,” Jurnal Manajemen Akuntansi (JUMSI), vol. 3, no. 2, pp. 649-657, 2023, doi: 10.36987/jumsi.v3i2.4124.

N. P. A. Mariati, I. W. Sudiarsa, dan N. M. S. Sanjiwani, “Perbandingan Regresi Linier Berganda dengan Spline Truncated (Studi Kasus: Kemiskinan Di Provinsi Papua),” Widyadari, vol. 23, no. 2, pp. 240-246, 2022, doi: 10.5373/jardcs/v12i8/20202612.

A. S. Rahmawati, D. Ispriyanti, and B. Warsito, “Pemodelan Kasus Kemiskinan di Jawa Tengah Menggunakan Regresi Nonparametrik Metode B-Spline,” Jurnal Gaussian, vol. 6, no. 1, pp. 11-20, 2017, doi: 10.14710/j.gauss.6.1.11-20.

Refbacks

  • There are currently no refbacks.