Accreditation:
Indexed by:
ISSN:
Tools
Abstract. Conventional plastics made from petroleum polymers were the largest contributor to solid waste on earth. Environmentally friendly bioplastic fabricated by compositing starch and natural fibers were proposed to be a solution to this problem. The purpose of this research was to synthesize bioplastic from water hyacinth fiber composite with cassava starch and test its mechanical properties. Bioplastic fabrication was using melt intercalation method using water hyacinth fibers (WHF) with and without alkali treatment mixed with cassava starch (CS) and glycerol as plasticizer. The resulting bioplastic were characterized with FT-IR and tested for mechanical properties. The mechanical test results showed that water hyacinth fiber alkaline treated/cassava starch (WHF-AT/CS) bioplastic has tensile strength, % elongation, and water absorption values of 1.226 MPa, 3.33%, and 10.26%, respectively. While the bioplastic water hyacinth fiber untreated/cassava starch (WHF-UT/CS) has a tensile strength test value, % elongation, and water absorption of 0.306 MPa, 1.67%, and 11.39, respectively. Therefore it can be said that WHF-AT/CS bioplastic has better mechanical properties when compared to WHF-UT/CS bioplastic.
Keywords:
Biocomposite, Bioplastic, Cassava Starch, Water Hyacinth Fiber
[1] C. Mastrolia et al., “Plastic Pollution: Are Bioplastics the Right Solution?,” Water, vol. 14, no. 22, p. 3596, Nov. 2022, doi: 10.3390/w14223596.
[2] S. S. Ali et al., “Degradation of conventional plastic wastes in the environment: A review on current status of knowledge and future perspectives of disposal,” Sci. Total Environ., vol. 771, p. 144719, Jun. 2021, doi: 10.1016/j.scitotenv.2020.144719.
[3] I. Aprilianti and F. Amanta, “Memajukan Keamanan Pangan pada Layanan Pesan Antar Makanan Daring di Indonesia,” Cent. Indones. Policy Stud., no. 28, p. 7, 2020.
[4] A. Jain, “State of Plastics Waste in Asia and the Pacific - Issues, Challenges and Circular Economic Opportunities,” 10th Reg. 3R Circ. Econ. Forum Asia Pacific (Series Webinars), no. December, p. 14, 2020.
[5] N. A. Ismail et al., “Synthesis and Characterization of Biodegradable Starch-Based Bioplastics,” Mater. Sci. Forum, vol. 846, pp. 673–678, Mar. 2016, doi: 10.4028/www.scientific.net/MSF.846.673.
[6] Marichelvam, Jawaid, and Asim, “Corn and Rice Starch-Based Bio-Plastics as Alternative Packaging Materials,” Fibers, vol. 7, no. 4, p. 32, Apr. 2019, doi: 10.3390/fib7040032.
[7] Y. Zoungranan, E. Lynda, K. K. Dobi-Brice, E. Tchirioua, C. Bakary, and D. D. Yannick, “Influence of natural factors on the biodegradation of simple and composite bioplastics based on cassava starch and corn starch,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104396, Oct. 2020, doi: 10.1016/j.jece.2020.104396.
[8] V. Fegade, M. Ramachandran, S. Madhu, C. Vimala, R. K. Malar, and R. Rajeshwari, “A review on basalt fibre reinforced polymeric composite materials,” 2022, p. 020172. doi: 10.1063/5.0074178.
[9] M. R. M. Huzaifah, M. S. Sapuan, Z. Leman, and M. R. Ishak, “Comparative study on chemical composition, physical, tensile, and thermal properties of sugar palm fiber (Arenga pinnata) obtained from different geographical locations,” BioResources, vol. 12, no. 4, pp. 9366–9382, 2017.
[10] H. N. Salwa, S. M. Sapuan, M. T. Mastura, and M. Y. M. Zuhri, “Green bio composites for food packaging,” Int. J. Recent Technol. Eng., vol. 8, no. 2 Special Issue 4, pp. 450–459, 2019, doi: 10.35940/ijrte.B1088.0782S419.
[11] H. T. Nguyen and T. B. H. Nguyen, “Treatment of Water Hyacinth Fibers to Improve Mechanical and Microstructural Properties of Green Composite Materials,” Nano Hybrids Compos., vol. 35, pp. 111–122, Apr. 2022, doi: 10.4028/p-30xboe.
[12] N. Jain, V. K. Singh, and S. Chauhan, “Review on effect of chemical, thermal, additive treatment on mechanical properties of basalt fiber and their composites,” J. Mech. Behav. Mater., vol. 26, no. 5–6, pp. 205–211, Dec. 2017, doi: 10.1515/jmbm-2017-0026.
[13] R. A. Reddy, K. Yoganandam, and V. Mohanavel, “Effect of chemical treatment on natural fiber for use in fiber reinforced composites – Review,” Mater. Today Proc., vol. 33, pp. 2996–2999, 2020, doi: 10.1016/j.matpr.2020.02.982.
[14] K. Gopalakrishna, N. Reddy, and Y. Zhao, “Biocomposites from Biofibers and Biopolymers,” in Biofibers and Biopolymers for Biocomposites, Cham: Springer International Publishing, 2020, pp. 91–110. doi: 10.1007/978-3-030-40301-0_4.
[15] J. Yang, Y. C. Ching, C. H. Chuah, N. D. Hai, R. Singh, and A. R. M. Nor, “Preparation and characterization of starch-based bioplastic composites with treated oil palm empty fruit bunch fibers and citric acid,” Cellulose, vol. 28, no. 7, pp. 4191–4210, May 2021, doi: 10.1007/s10570-021-03816-8.
[16] R. Jumaidin, M. A. A. Khiruddin, Z. Asyul Sutan Saidi, M. S. Salit, and R. A. Ilyas, “Effect of cogon grass fibre on the thermal, mechanical and biodegradation properties of thermoplastic cassava starch biocomposite,” Int. J. Biol. Macromol., vol. 146, pp. 746–755, Mar. 2020, doi: 10.1016/j.ijbiomac.2019.11.011.
[17] M. Asrofi, S. M. Sapuan, R. A. Ilyas, and M. Ramesh, “Characteristic of composite bioplastics from tapioca starch and sugarcane bagasse fiber: Effect of time duration of ultrasonication (Bath-Type),” Mater. Today Proc., vol. 46, pp. 1626–1630, 2021, doi: 10.1016/j.matpr.2020.07.254.
[18] A. Edhirej, S. M. Sapuan, M. Jawaid, and N. I. Zahari, “Cassava/sugar palm fiber reinforced cassava starch hybrid composites: Physical, thermal and structural properties,” Int. J. Biol. Macromol., vol. 101, pp. 75–83, Aug. 2017, doi: 10.1016/j.ijbiomac.2017.03.045.
[19] A. T. T. Putri, “Pengaruh Plasticizer Sorbitol terhadap Karakteristik Bioplastik dari Tepung Tapioka dan Tandan Kosong Kelapa Sawit dengan Penambahan Kitosan,” Politeknik Negeri Sriwijaya, 2020.
[20] W. R. Tamiogy, A. Kardisa, H. Hisbullah, and S. Aprilia, “pemanfaatan selulosa dari limbah kulit buah pinang sebagai bahan baku pembuatan bioplastik,” J. Rekayasa Kim. Lingkung., vol. 14, no. 1, pp. 63–71, Jun. 2019, doi: 10.23955/rkl.v14i1.11517.
[21] N. S. Priyono, “Pengaruh Penambahan Tepung Tapioka dan Gliserol Pada Pembuatan Bioplastik Berbahan Baku Limbah Organik,” Universitas PGRI Adi Buana Surabaya, 2021.
[22] A. Sabella, “KARAKTERISTIK BIOPLASTIK DARI RUMPUT LAUT (EUCHEUMA COTTONII) DAN PATI SINGKONG DENGAN PENAMBAHAN PATI DARI LIMBAH BIJI DURIAN,” Risenologi, vol. 4, no. 2, pp. 80–89, Oct. 2019, doi: 10.47028/j.risenologi.2019.42.54.
[23] A. Rahim and R. Musta, “Pengaruh Penambahan Tepung Tapioka Pada Pati Ubi Kayu (Manihot esculenta) Terhadap Pembuatan Plastik Biodegradable dan Karakterisasinya,” IJCA (Indonesian J. Chem. Anal., vol. 2, no. 2, pp. 66–73, Sep. 2019, doi: 10.20885/ijca.vol2.iss2.art4.
[24] L. D. E. Indarti, S. Purnavita, and M. A. Pratiwi, “Komposit Kolang-Kaling Dan Tepung Tapioka Dengan Penambahan Berbagai Jenis Plasticizer,” METANA, vol. 17, no. 1, pp. 7–14, 2023, doi: 10.14710/metana.v17i1.33636.
[25] S. Susanti, J. D. Malago, and S. Junaedi, “Sintesis Komposit Bioplastic Berbahan Dasar Tepung Tapioka dengan Penguat Serat Bambu,” J. Sains dan Pendidik. Fis., vol. 11, no. 2, pp. 173–178, 2015, doi: 10.35580/jspf.v11i2.1486.