Accreditation:
Indexed by:
ISSN:
Tools
A. Amobonye, J. Bendoraitiene, L. Peciulyte, and R. Rutkaite, “Review of recent advancements in starch modification: Improving the functionality of starch-based films,” Int J Biol Macromol, vol. 315, p. 144354, 2025, doi: https://doi.org/10.1016/j.ijbiomac.2025.144354.
W. S. W. Pratiwi, A. Anal, and S. Putra, “Production by Lintnerization-Autoclaving and Physicochemical Characterization of Resistant Starch III from Sago Palm (Metroxylon sagu rottb),” Indonesian Journal of Chemistry, vol. 15, pp. 295–304, May 2015, doi: 10.22146/ijc.21199.
R. Setiarto, D. Andrianto, and M. Isra, “Effect of lintnerization (acid hydrolysis) on resistant starch levels and prebiotic properties of high carbohydrate foods: A meta-analysis study,” Songklanakarin Journal of Science and Technology, vol. 44, pp. 1331–1338, Jan. 2023.
A. Aparicio-Saguilán, E. Flores-Huicochea, J. Tovar, F. García-Suárez, F. Gutiérrez-Meraz, and L. A. Bello-Pérez, “Resistant Starch-rich Powders Prepared by Autoclaving of Native and Lintnerized Banana Starch: Partial Characterization,” Starch - Stärke, vol. 57, no. 9, pp. 405–412, Sep. 2005, doi: https://doi.org/10.1002/star.200400386.
S. Raungrusmee, S. Koirala, and A. K. Anal, “Effect of physicochemical modification on granule morphology, pasting behavior, and functional properties of riceberry rice (Oryza Sativa L.) starch,” Food Chemistry Advances, vol. 1, p. 100116, 2022, doi: https://doi.org/10.1016/j.focha.2022.100116.
T. Taguchi et al., “Evaluation of starch retrogradation by X-ray diffraction using a water-addition method,” LWT, vol. 173, p. 114341, 2023, doi: https://doi.org/10.1016/j.lwt.2022.114341.
C. W. Titi Candra Sunarti TIP Nur Richana Djumali Mangunwidjaja, “PENGARUH LAMA HIDROLISIS ASAM TERHADAP KARAKTERISTIK FISIKO-KIMIA PATI GARUT,” Jurnal Teknologi Industri Pertanian, vol. 24, no. 3, Mar. 2015, [Online]. Available: https://journal.ipb.ac.id/index.php/jurnaltin/article/view/9124
C. Du, F. Jiang, W. Jiang, W. Ge, and S. kui Du, “Physicochemical and structural properties of sago starch,” Int J Biol Macromol, vol. 164, pp. 1785–1793, Dec. 2020, doi: 10.1016/j.ijbiomac.2020.07.310.
A. Windra, Ulyarti, and D. W. Sari, “Correlation Study Between Modification Types and Characteristics of Cassava Starch (Manihot utilissima) Using Pearson Correlation.” [Online]. Available: https://www.sciencedirect.com/
A. Fadilla, V. Amalia, I. Ryski Wahyuni, J. Kimia, F. Sains dan Teknologi, and U. Sunan Gunung Djati Bandung, “Seminar Nasional Kimia 2023 UIN Sunan Gunung Djati Bandung.”
M. Li, F. Xie, J. Hasjim, T. Witt, P. J. Halley, and R. G. Gilbert, “Establishing whether the structural feature controlling the mechanical properties of starch films is molecular or crystalline,” Carbohydr Polym, vol. 117, pp. 262–270, 2015, doi: https://doi.org/10.1016/j.carbpol.2014.09.036.
N. H. Ahmad Kamarudin, D. Noor, and R. Rahman, “MICROBIAL DEGRADATION OF POLYLACTIC ACID BIOPLASTIC,” J Sustain Sci Manag, vol. 16, pp. 299–317, Oct. 2021, doi: 10.46754/jssm.2021.10.021.
A. Pischedda, M. Tosin, and F. Degli-Innocenti, “Biodegradation of plastics in soil: The effect of temperature,” Polym Degrad Stab, vol. 170, p. 109017, 2019, doi: https://doi.org/10.1016/j.polymdegradstab.2019.109017.
S. G. Shanmugam et al., “Bacterial Diversity Patterns Differ in Soils Developing in Sub-tropical and Cool-Temperate Ecosystems,” Microb Ecol, vol. 73, no. 3, pp. 556–569, 2017, doi: 10.1007/s00248-016-0884-8.
S. Chinaglia, E. Esposito, M. Tosin, M. Pecchiari, and F. Degli Innocenti, “Biodegradation of plastics in soil: The effect of water content,” Polym Degrad Stab, vol. 222, p. 110691, 2024, doi: https://doi.org/10.1016/j.polymdegradstab.2024.110691.