Accreditation:
Indexed by:
ISSN:
Tools
O. Farobie, E. Hartulistiyoso, “Palm Oil Biodiesel as a Renewable Energy Resource in Indonesia: Current Status and Challenges,” Bioenergy Res. 15 93–111 (2022). https://doi.org/10.1007/S12155-021-10344-7. [2] N.M. Kosamia, M. Samavi, B.K. Uprety, S.K. Rakshit, “Valorization of Biodiesel Byproduct Crude Glycerol for the Production of Bioenergy and Biochemicals,” Catalysts. 10 (2020). https://doi.org/10.3390/CATAL10060609. [3] C.N. Dias, A.M. Viana, L. Cunha-Silva, S.S. Balula, “The Role of the Heterogeneous Catalyst to Produce Solketal from Biodiesel Waste: The Key to Achieve Efficiency,” Nanomaterials. 14 (2024). https://doi.org/10.3390/NANO14100828. [4] M. Siregar, R. Raihan, C. Cahyono, “Application of circular economy in manufacturing industry in Indonesia,” AMCA Journal of Community Development. 3 19–24 (2023). https://doi.org/10.51773/AJCD.V3I1.211. [5] M.N. Moreira, I. Corrêa, A.M. Ribeiro, A.E. Rodrigues, R.P. V Faria, “Solketal Production in a Fixed Bed Adsorptive Reactor through the Ketalization of Glycerol,” Industrial & Engineering Chemistry Research. 59 2805–2816 (2020). https://doi.org/10.1021/acs.iecr.9b06547. [6] S. Castillo, P. Grbovic, “The APISSER Methodology for Systematic Literature Reviews in Engineering,” IEEE Access. PP 1–1 (2022). https://doi.org/10.1109/ACCESS.2022.3148206. [7] M.M. Cumming, E. Bettini, J.C. Chow, “High-Quality Systematic Literature Reviews in Special Education: Promoting Coherence, Contextualization, Generativity, and Transparency,” The Exceptional Child. 89 412–431 (2023). https://doi.org/10.1177/00144029221146576. [8] H. Sulistyo, I. Perdana, F.T. Pratiwi, I. Hartati, “Kinetics and Thermodynamics Studies of Ketalization of Glycerol and Acetone in the Presence of Basolite F300 as Catalyst,” IOP Conf Ser Mater Sci Eng. 742 012007 (2020). https://doi.org/10.1088/1757-899X/742/1/012007. [9] A.A.Q. Ali, Z.N. Siddiqui, “Heteropoly Ionic Liquid Functionalized MOF-Fe: Synthesis, Characterization, and Catalytic Application in Selective Acetalization of Glycerol to Solketal as a Fuel Additive at Room Temperature, Solvent-Free Conditions,” Precision Chemistry. 1 485–496 (2023). https://doi.org/10.1021/PRECHEM.3C00017. [10] F.D.I. Sawali, H. Sulistyo, W.B. Sediawan, “The processing of glycerol with acetone to produce solketal using amberlite IR 120 Na catalyst,” AIP Conf Proc. 2623 (2023). https://doi.org/10.1063/5.0130162/2907825. [11] P.A.D.A. Perdana, H. Sulistyo, M.M. Azis, “Solketal Reaction Optimization by Glycerol Acetalization Using Amberlyst-36 Catalyst,” Materials Science Forum. 1113 155–159 (2024). https://doi.org/10.4028/P-KIW3ER. [12] T.C. Trisnantari, H. Sulistyo, M.M. Azis, “Solketal Synthesis from Glycerol and Acetone Using Amberlyst-36 Catalyst,” Materials Science Forum. 1113 161–166 (2024). https://doi.org/10.4028/p-4ferz0. [13] H. Sulistyo, D.P. Priadana, Y.W. Fitriandini, T. Ariyanto, M.M. Azis, “Utilization of glycerol by ketalization reactions with acetone to produce solketal using indion 225 Na as catalyst,” International Journal of Technology. 11 190–199 (2020). https://doi.org/10.14716/IJTECH.V11I1.3093. [14] Y. Ji, T. Zhang, X. Gui, H.J. Shi, Z. Yun, “Solventless ketalization of glycerol to solketal with acetone over the ionic liquid [P(C4H9)3C14H29][TsO],” Chin J Chem Eng. 28 158–164 (2020). https://doi.org/10.1016/J.CJCHE.2019.07.019. [15] J.A.C. Nascimento, B.P. Pinto, V.M.A. Calado, C.J.A. Mota, “Synthesis of solketal fuel additive from acetone and glycerol using CO2 as switchable catalyst,” Front Energy Res. 7 (2019). https://doi.org/10.3389/FENRG.2019.00058/FULL. [16] I. Zahid, M. Ayoub, M.H. Nazir, F. Sher, R. Shamsuddin, B. bin Abdullah, M. Ameen, “Kinetic & thermodynamic studies of green fuel additive solketal from crude glycerol over metakaolin clay catalyst,” Biomass Bioenergy. 181 107029 (2024). https://doi.org/10.1016/J.BIOMBIOE.2023.107029. [17] M. Farooq, F. Zaid, A. Ramli, F. Perveen, A. Naeem, I.W. Khan, Z.A. Ghazi, A. Ur Rehman, “Development of Porous WO3/SAPO-34 Solid Catalyst for the Conversion of Glycerol to Fuel Performance Improving Bio-additive (Solketal),” Arab J Sci Eng. 50 93–105 (2025). https://doi.org/10.1007/S13369-024-09084-5/METRICS. [18] S. Maurya, Y. Chandra Sharma, “A facile approach for the synthesis of solketal, a fuel additive, from biowaste glycerol using transition metal-based solid acid catalysts,” RSC Adv. 14 39511–39522 (2024). https://doi.org/10.1039/D4RA05455E. [19] J. Kowalska-Kuś, A. Malaika, A. Held, A. Jankowska, E. Janiszewska, M. Zieliński, K. Nowińska, S. Kowalak, K. Końska, K. Wróblewski, “Synthesis of Solketal Catalyzed by Acid-Modified Pyrolytic Carbon Black from Waste Tires,” Molecules. 29 4102 (2024). https://doi.org/10.3390/MOLECULES29174102/S1. [20] S. Ao, L.A. Alghamdi, T. Kress, M. Selvaraj, G. Halder, A.E.H. Wheatley, S. Lalthazuala Rokhum, “Microwave-assisted valorization of glycerol to solketal using biomass-derived heterogeneous catalyst,” Fuel. 345 128190 (2023). https://doi.org/10.1016/J.FUEL.2023.128190. [21] M.R. Nanda, Z. Yuan, W. Qin, H.S. Ghaziaskar, M.A. Poirier, C. Xu, “Catalytic conversion of glycerol to oxygenated fuel additive in a continuous flow reactor: Process optimization,” Fuel. 128 113–119 (2014). https://doi.org/10.1016/J.FUEL.2014.02.068. [22] S. Guidi, M. Noè, P. Riello, A. Perosa, M. Selva, “Towards a Rational Design of a Continuous-Flow Method for the Acetalization of Crude Glycerol: Scope and Limitations of Commercial Amberlyst 36 and AlF3·3H2O as Model Catalysts,” Molecules. 21 (2016). https://doi.org/10.3390/MOLECULES21050657. [23] W. Tan, A. Liu, S. Xie, Y. Yan, T.E. Shaw, Y. Pu, K. Guo, L. Li, S. Yu, F. Gao, F. Liu, L. Dong, “Ce-Si Mixed Oxide: A High Sulfur Resistant Catalyst in the NH3-SCR Reaction through the Mechanism-Enhanced Process.,” Environ Sci Technol. 55 4017–4026 (2021). https://doi.org/10.1021/ACS.EST.0C08410. [24] S. Xu, K.F. Zhang, Y.K. Ma, A.P. Jia, J. Chen, M.F. Luo, Y. Wang, J.Q. Lu, “Catalytic oxidation of dichloromethane over CrFeO mixed oxides: Improved activity and stability by sulfuric acid treatment,” Appl Catal A Gen. 636 (2022). https://doi.org/10.1016/J.APCATA.2022.118573. [25] W.S. Abo El-Yazeed, S.A. El-Hakam, A.A. Ibrahim, A.I. Ahmed, “Sulfated iron oxide mesoporous silica [SO42-/Fe2O3-mSiO2]: A highly efficient solid acid catalyst for the green production of pharmaceutically significant 7-hydroxy-4-methyl coumarin, 3,4-dihydropyrmidinone and hydroquinone diacetate,” Inorg Chem Commun. 156 (2023). https://doi.org/10.1016/J.INOCHE.2023.111174. [26] D.G. Gil-Gavilán, J. Amaro-Gahete, R. Rojas-Luna, A. Benítez, R. Estevez, D. Esquivel, F.M. Bautista, F.J. Romero-Salguero, “Sulfonated Graphene‐Based Materials as Heterogeneous Acid Catalysts for Solketal Synthesis by Acetalization of Glycerol,” ChemCatChem. 16 (2024). https://doi.org/10.1002/CCTC.202400251. [27] N. Yadav, G. Yadav, M. Ahmaruzzaman, “Selective synthesis of oxygenated fuel derivative from microwave assisted acetalization of glycerol: Optimization and mechanistic investigations,” Renew Energy. 236 (2024). https://doi.org/10.1016/J.RENENE.2024.121465.