Pedotransfer functions for soil organic carbon stock and soil porosity interpretation in diverse palm oil plantation soils

Riris Srigayuh Tegarningtyas Tinuntun, Widyatmani Sih Dewi, Mujiyo Mujiyo, Aktavia Herawati, Ganjar Herdiansyah, Sumani Sumani, Angger Cahyo, Bagus Guritno Widjojo, Bangun Budi Prasetyo, Zsolt Kotroczó

Abstract

The accurate estimation of soil organic carbon stocks (SOCs) is crucial in sustainable oil palm plantation management. Pedotransfer functions (PTFs) serve as an essential predictive tool for enhancing the interpretation and estimation of soil organic carbon stocks (SOCs) and soil porosity. This study aims to improve the precision of SOCs and soil porosity predictions across diverse soil types within oil palm plantations through the application of PTFs. The study was conducted using a survey approach and descriptive exploration in an oil palm plantation in Seruyan District, Central Kalimantan. The study area encompassed four distinct soil types (Alfisols, Inceptisols, Ultisols, and Entisols), with six replicates for each soil type. Soil samples were collected from a depth of 0–60 cm. Statistical analyses included ANOVA, Tukey’s pairwise comparisons, correlation, and stepwise regression. The results indicated that soil types within oil palm plantations did not significantly affect SOCs but significantly impacted soil porosity. SOCs and porosity estimated using PTFs were lower than those estimated without PTFs. Specifically, SOCs analysis with PTFs ranged from 3.4 to 7.1 kg m-²; without PTFs, the range was higher, between 8.1 and 10.9 kg m-². Among the soil types, Entisols exhibited higher porosity with PTFs (51.3%), while Ultisols had the lowest porosity (37.9%). The PTFs provide better predictions for SOCs and porosity, and predictor variables that contribute the most are sand, silt, bulk density (BD), and cation exchange capacity (CEC). PTFs provide an advanced, data-driven approach to assessing SOCs and soil porosity in oil palm plantations, supporting the development of smarter, sustainable, and highly efficient management strategies.

Keywords

CEC; Emission; Entisols; Macropore; Regression

Full Text:

PDF

References

Abdallah, A. M., Jat, H. S., Choudhary, M., Abdelaty, E. F., Sharma, P. C., & Jat, M. L. (2021). Conservation Agriculture Effects on Soil Water Holding Capacity and Water-Saving Varied with Management Practices and Agroecological Conditions: A Review. Agronomy, 11(9), 1681. https://doi.org/10.3390/agronomy11091681

Alaboz, P., Sinan, D., & and Dengiz, O. (2021). Assessment of Various Pedotransfer Functions for the Prediction of the Dry Bulk Density of Cultivated Soils in a Semiarid Environment. Communications in Soil Science and Plant Analysis, 52(7), 724-742. https://doi.org/10.1080/00103624.2020.1869760

Apresian, S. R., Tyson, A., Varkkey, H., Choiruzzad, S. A. B., & Indraswari, R. (2020). Palm Oil Development in Riau, Indonesia: Balancing Economic Growth and Environmental Protection. Nusantara:An International Journal of Humanities and Social Sciences, 2(1), 1-29. https://doi.org/10.6936/nijhss.202006_2(1).0001

Arbor, A., Schmidt, M., Saurette, D., Zhang, J., Bulmer, C., Filatow, D., . . . Heung, B. (2023). A framework for recalibrating pedotransfer functions using nonlinear least squares and estimating uncertainty using quantile regression. Geoderma, 439, 116674. https://doi.org/10.1016/j.geoderma.2023.116674

Arbor, A., Schmidt, M., Zhang, J., Bulmer, C., Filatow, D., Kasraei, B., . . . Heung, B. (2024). Filling the gaps in soil data: A multi-model framework for addressing data gaps using pedotransfer functions and machine-learning with uncertainty estimates to estimate bulk density. CATENA, 245, 108310. https://doi.org/10.1016/j.catena.2024.108310

Ariyanto, D. P., Qudsi, Z. A., Sumani, Dewi, W. S., Rahayu, & Komariah. (2021). The dynamic effect of air temperature and air humidity toward soil temperature in various lands cover at KHDTK Gunung Bromo, Karanganyar - Indonesia. IOP Conference Series: Earth and Environmental Science, 724(1), 012003. https://doi.org/10.1088/1755-1315/724/1/012003

Arunrat, N., Kongsurakan, P., Sereenonchai, S., & Hatano, R. (2020). Soil Organic Carbon in Sandy Paddy Fields of Northeast Thailand: A Review. Agronomy, 10(8), 1061. https://doi.org/10.3390/agronomy10081061

Bagnall, D. K., Morgan, C. L. S., Cope, M., Bean, G. M., Cappellazzi, S., Greub, K., . . . Honeycutt, C. W. (2022). Carbon-sensitive pedotransfer functions for plant available water. Soil Science Society of America Journal, 86(3), 612-629. https://doi.org/10.1002/saj2.20395

Bertozzi, J., Andrade, D. S., Oliveira, C. C., Bala, A., & Caviglione, J. H. (2020). Microwave assisted biocidal extraction is an alternative method to measure microbial biomass of carbon from cultivated and non-cultivated soils. Brazilian Journal of Microbiology, 51(1), 255-263. https://doi.org/10.1007/s42770-019-00186-z

Bi, X., Chu, H., Fu, M., Xu, D., Zhao, W., Zhong, Y., . . . Zhang, Y.-n. (2023). Distribution characteristics of organic carbon (nitrogen) content, cation exchange capacity, and specific surface area in different soil particle sizes. Scientific Reports, 13(1), 12242. https://doi.org/10.1038/s41598-023-38646-0

Burghardt, W., Heintz, D., & Hocke, N. (2018). Soil Fertility Characteristics and Organic Carbon Stock in Soils of Vegetable Gardens Compared with Surrounding Arable Land at the Center of the Urban and Industrial Area of Ruhr, Germany. Eurasian Soil Science, 51(9), 1067-1079. https://doi.org/10.1134/S106422931809003X

Bzdok, D., Engemann, D., & Thirion, B. (2020). Inference and Prediction Diverge in Biomedicine. Patterns, 1(8), 100119. https://doi.org/10.1016/j.patter.2020.100119

Chen, S., Chen, Z., Zhang, X., Luo, Z., Schillaci, C., Arrouays, D., . . . Shi, Z. (2024). European topsoil bulk density and organic carbon stock database (0–20 cm) using machine-learning-based pedotransfer functions. Earth Syst. Sci. Data, 16(5), 2367-2383. https://doi.org/10.5194/essd-16-2367-2024

Chen, Z., Xue, J., Wang, Z., Zhou, Y., Deng, X., Liu, F., . . . Chen, S. (2024). Ensemble modelling-based pedotransfer functions for predicting soil bulk density in China. Geoderma, 448, 116969. https://doi.org/10.1016/j.geoderma.2024.116969

Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, e623. https://doi.org/10.7717/peerj-cs.623

Chidozie, E., Ogechi, O., Michael, C., Raza, T., Qadir, M. F., Buikem, U.-O., . . . Winifred, I. (2021). Estimating land degradation neutrality (LDN) using carbon sequestration pedotransfer function on dissimilar land use and land cover in humid tropics. Soil & Environment, 40(2), 102-109. https://www.se.org.pk/File-Download.aspx?archivedpaperid=911

Cooper, H. V., Evers, S., Aplin, P., Crout, N., Dahalan, M. P. B., & Sjogersten, S. (2020). Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nature Communications, 11(1), 407. https://doi.org/10.1038/s41467-020-14298-w

da Costa, A. C. S., Junior, I. G. d. S., Canton, L. C., Gil, L. G., & Figueiredo, R. (2020). Contribution of the chemical and mineralogical properties of sandy-loam tropical soils to the cation exchange capacity. Revista Brasileira de Ciencia do Solo, 44, -. https://doi.org/10.36783/18069657rbcs20200019

De Feudis, M., Falsone, G., Vianello, G., Agnelli, A., & Vittori Antisari, L. (2022). Soil organic carbon stock assessment in forest ecosystems through pedogenic horizons and fixed depth layers sampling: What's the best one? Land Degradation & Development, 33(9), 1446-1458. https://doi.org/10.1002/ldr.4253

de Lima, R. P., Rolim, M. M., Toledo, M. P. S., Tormena, C. A., da Silva, A. R., e Silva, I. A. C., & Pedrosa, E. M. R. (2022). Texture and degree of compactness effect on the pore size distribution in weathered tropical soils. Soil and Tillage Research, 215, 105215. https://doi.org/10.1016/j.still.2021.105215

Dengiz, O., Sağlam, M., & Türkmen, F. (2015). Effects of soil types and land use - land cover on soil organic carbon density at Madendere watershed. Eurasian Journal of Soil Science, 4(2), 82-87. https://doi.org/10.18393/ejss.64398

Dewi, W. S., & Nurhutami, S. R. (2023). Carbon farming in paddy soil to increase soil C and soil health as an implementation of soil carbon 4 per mille. IOP Conference Series: Earth and Environmental Science, 1165(1), 012023. https://doi.org/10.1088/1755-1315/1165/1/012023

Dharumarajan, S., Kalaiselvi, B., Suputhra, A., Lalitha, M., Vasundhara, R., Kumar, K. S. A., . . . Lagacherie, P. (2021). Digital soil mapping of soil organic carbon stocks in Western Ghats, South India. Geoderma Regional, 25, e00387. https://doi.org/10.1016/j.geodrs.2021.e00387

Do, M.-T. T., Van, L. N., Le, X.-H., Nguyen, G. V., Yeon, M., & Lee, G. (2024). National variability in soil organic carbon stock predictions: Impact of bulk density pedotransfer functions. International Soil and Water Conservation Research, 12(4), 868-884. https://doi.org/10.1016/j.iswcr.2024.04.002

Dong, J., Ma, R., Cai, P., Liu, P., Yue, H., Zhang, X., . . . Song, X. (2021). Effect of sample number and location on accuracy of land use regression model in NO2 prediction. Atmospheric Environment, 246, 118057. https://doi.org/10.1016/j.atmosenv.2020.118057

dos Reis, A. M. H., Teixeira, W. G., Fontana, A., Barros, A. H. C., Victoria, D. d. C., Vasques, G. M., . . . Monteiro, J. E. B. d. A. (2024). Hierarchical pedotransfer functions for predicting bulk density in Brazilian soils. Scientia Agricola, 81, e20220255. https://doi.org/10.1590/1678-992X-2022-0255

Drewer, J., Leduning, M. M., Griffiths, R. I., Goodall, T., Levy, P. E., Cowan, N., . . . Skiba, U. M. (2021). Comparison of greenhouse gas fluxes from tropical forests and oil palm plantations on mineral soil. Biogeosciences, 18(5), 1559-1575. https://doi.org/10.5194/bg-18-1559-2021

Fekete, B. M., Bacskó, M., Zhang, J., & Chen, M. (2023). Storage requirements to mitigate intermittent renewable energy sources: analysis for the US Northeast. Frontiers in Environmental Science, Volume 11 - 2023. https://doi.org/10.3389/fenvs.2023.1076830

Gonçalves, D. R. P., Sá, J. C. d. M., Mishra, U., Cerri, C. E. P., Ferreira, L. A., & Furlan, F. J. F. (2017). Soil type and texture impacts on soil organic carbon storage in a sub-tropical agro-ecosystem. Geoderma, 286, 88-97. https://doi.org/10.1016/j.geoderma.2016.10.021

Gross, C. D., & Harrison, R. B. (2018). Quantifying and Comparing Soil Carbon Stocks: Underestimation with the Core Sampling Method. Soil Science Society of America Journal, 82(4), 949-959. https://doi.org/10.2136/sssaj2018.01.0015

Guo, Y., Fan, R., Zhang, X., Zhang, Y., Wu, D., McLaughlin, N., . . . Liang, A. (2020). Tillage-induced effects on SOC through changes in aggregate stability and soil pore structure. Science of The Total Environment, 703, 134617. https://doi.org/10.1016/j.scitotenv.2019.134617

Hairiah, K., van Noordwijk, M., Sari, R. R., Saputra, D. D., Widianto, Suprayogo, D., . . . Gusli, S. (2020). Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agriculture, Ecosystems & Environment, 294, 106879. https://doi.org/10.1016/j.agee.2020.106879

Hale, S. E., Nurida, N. L., Jubaedah, Mulder, J., Sørmo, E., Silvani, L., . . . Cornelissen, G. (2020). The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Science of The Total Environment, 719, 137455. https://doi.org/10.1016/j.scitotenv.2020.137455

Herawati, A., Mujiyo, M., Dewi, W. S., Syamsiyah, J., & Romadhon, M. R. (2024). Improving microbial properties in Psamments with mycorrhizal fungi, amendments, and fertilizer. Eurasian Journal of Soil Science, 13(1), 59-69. https://doi.org/10.18393/ejss.1396572

Hikouei, I. S., Kim, S. S., & Mishra, D. R. (2021). Machine-Learning Classification of Soil Bulk Density in Salt Marsh Environments. Sensors, 21(13), 4408. https://doi.org/10.3390/s21134408

Hounkpatin, O. K. L., Op de Hipt, F., Bossa, A. Y., Welp, G., & Amelung, W. (2018). Soil organic carbon stocks and their determining factors in the Dano catchment (Southwest Burkina Faso). CATENA, 166, 298-309. https://doi.org/10.1016/j.catena.2018.04.013

Huang, J., & Hartemink, A. E. (2020). Soil and environmental issues in sandy soils. Earth-Science Reviews, 208, 103295. https://doi.org/10.1016/j.earscirev.2020.103295

Igaz, D., Aydin, E., Šinkovičová, M., Šimanský, V., Tall, A., & Horák, J. (2020). Laser Diffraction as An Innovative Alternative to Standard Pipette Method for Determination of Soil Texture Classes in Central Europe. Water, 12(5), 1232. https://doi.org/10.3390/w12051232

Jakšić, S., Ninkov, J., Milić, S., Vasin, J., Živanov, M., Jakšić, D., & Komlen, V. (2021). Influence of Slope Gradient and Aspect on Soil Organic Carbon Content in the Region of Niš, Serbia. Sustainability, 13(15), 8332. https://doi.org/10.3390/su13158332

Juhos, K., Nugroho, P. A., Jakab, G., Prettl, N., Kotroczó, Z., Szigeti, N., . . . Madarász, B. (2024). A comprehensive analysis of soil health indicators in a long-term conservation tillage experiment. Soil Use and Management, 40(1), e12942. https://doi.org/10.1111/sum.12942

Kementan. (2023). Buku Statistik Perkebunan Jilid I 2022-2024 [Statistics Of Estate Crops Volume I 2022-2024] (A. Cahyono, D. Gartina, & A. Udin, Eds.). Directorate General of Estates, Ministry of Agriculture of Republic of Indonesia. https://ditjenbun.pertanian.go.id/buku-statistik-perkebunan-jilid-i-2022-2024/

Khan, M. Z., & Chiti, T. (2022). Soil carbon stocks and dynamics of different land uses in Italy using the LUCAS soil database. Journal of Environmental Management, 306, 114452. https://doi.org/10.1016/j.jenvman.2022.114452

Kibet, E., Musafiri, C. M., Kiboi, M. N., Macharia, J., Ng’etich, O. K., Kosgei, D. K., . . . Ngetich, F. K. (2022). Soil Organic Carbon Stocks under Different Land Utilization Types in Western Kenya. Sustainability, 14(14), 8267. https://doi.org/10.3390/su14148267

Kusumawati, A., Eko, H., Heru, P. B., & and Nurudin, M. (2020). Composition of organic C fractions in soils of different texture affected by sugarcane monoculture. Soil Science and Plant Nutrition, 66(1), 206-213. https://doi.org/10.1080/00380768.2019.1705740

Lal, R. (2018). Digging deeper: A holistic perspective of factors affecting soil organic carbon sequestration in agroecosystems. Global Change Biology, 24(8), 3285-3301. https://doi.org/10.1111/gcb.14054

Li, T., Zhang, Y., Bei, S., Li, X., Reinsch, S., Zhang, H., & Zhang, J. (2020). Contrasting impacts of manure and inorganic fertilizer applications for nine years on soil organic carbon and its labile fractions in bulk soil and soil aggregates. CATENA, 194, 104739. https://doi.org/10.1016/j.catena.2020.104739

Liu, J., Wang, Z., Hu, F., Xu, C., Ma, R., & Zhao, S. (2020). Soil organic matter and silt contents determine soil particle surface electrochemical properties across a long-term natural restoration grassland. CATENA, 190, 104526. https://doi.org/10.1016/j.catena.2020.104526

Mao, H.-R., Cotrufo, M. F., Hart, S. C., Sullivan, B. W., Zhu, X., Zhang, J., . . . Zhu, M. (2024). Dual role of silt and clay in the formation and accrual of stabilized soil organic carbon. Soil Biology and Biochemistry, 192, 109390. https://doi.org/10.1016/j.soilbio.2024.109390

Mustapha, A. A., Abdu, N., Oyinlola, E. Y., & Nuhu, A. A. (2023). Evaluating Different Methods of Organic Carbon Estimation on Nigerian Savannah Soils. Journal of Soil Science and Plant Nutrition, 23(1), 790-800. https://doi.org/10.1007/s42729-022-01082-6

Nel, T., Bruneel, Y., & Smolders, E. (2023). Comparison of five methods to determine the cation exchange capacity of soil. Journal of Plant Nutrition and Soil Science, 186(3), 311-320. https://doi.org/10.1002/jpln.202200378

Nguemezi, C., Tematio, P., Silatsa, F. B. T., & Yemefack, M. (2021). Spatial variation and temporal decline (1985–2017) of soil organic carbon stocks (SOCS) in relation to land use types in Tombel area, South-West Cameroon. Soil and Tillage Research, 213, 105114. https://doi.org/10.1016/j.still.2021.105114

Nishigaki, T., Sugihara, S., Kilasara, M., & Funakawa, S. (2021). Carbon dioxide flux and soil carbon stock as affected by crop residue management and soil texture in semi-arid maize croplands in Tanzania. Soil Use and Management, 37(1), 83-94. https://doi.org/10.1111/sum.12680

Owonubi, A., & Mustapha, Y. (2024). An Evaluation of Soil Development in Relation to Topography Over Sandstone Parent Material. Forestist, 74(2), 224-230. https://doi.org/10.5152/forestist.2024.23039

Palladino, M., Romano, N., Pasolli, E., & Nasta, P. (2022). Developing pedotransfer functions for predicting soil bulk density in Campania. Geoderma, 412, 115726. https://doi.org/10.1016/j.geoderma.2022.115726

Perreault, S., El Alem, A., Chokmani, K., & Cambouris, A. N. (2022). Development of Pedotransfer Functions to Predict Soil Physical Properties in Southern Quebec (Canada). Agronomy, 12(2), 526. https://doi.org/10.3390/agronomy12020526

Purnamasari, L., Rostaman, T., Widowati, L. R., & Anggria, L. (2021). Comparison of appropriate cation exchange capacity (CEC) extraction methods for soils from several regions of Indonesia. IOP Conference Series: Earth and Environmental Science, 648(1), 012209. https://doi.org/10.1088/1755-1315/648/1/012209

Qin, L., Lin, L., Ding, S., Yi, C., Chen, J., & Tian, Z. (2022). Evaluation of pedotransfer functions for predicting particle density of soils with low organic matter contents. Geoderma, 416, 115812. https://doi.org/10.1016/j.geoderma.2022.115812

Rahayu, Syamsiyah, J., & Sa'diyah, L. N. (2020). Aggregate stability of Alfisols root zone upon turfgrass treatment. Sains Tanah Journal of Soil Science and Agroclimatology, 17(1), 7. https://doi.org/10.20961/stjssa.v17i1.40455

Rahman, N., Giller, K. E., de Neergaard, A., Magid, J., van de Ven, G., & Bruun, T. B. (2021). The effects of management practices on soil organic carbon stocks of oil palm plantations in Sumatra, Indonesia. Journal of Environmental Management, 278, 111446. https://doi.org/10.1016/j.jenvman.2020.111446

Rini, M. V., Irvanto, D., & Ardiyanto, A. (2023). Study of Arbuscular Mycorrhizal Fungi population in the rhizosphere of oil palm planted on 4 different soil types in Central Kalimantan Indonesia. E3S Web of Conf., 373, 06005. https://doi.org/10.1051/e3sconf/202337306005

Rodrigues, C. I. D., Brito, L. M., & Nunes, L. J. R. (2023). Soil Carbon Sequestration in the Context of Climate Change Mitigation: A Review. Soil Systems, 7(3), 64. https://doi.org/10.3390/soilsystems7030064

Romadhon, M. R., Mujiyo, M., Cahyono, O., Dewi, W. S., Hardian, T., Anggita, A., . . . Istiqomah, N. M. (2024). Assessing the Effect of Rice Management System on Soil and Rice Quality Index in Girimarto, Wonogiri, Indonesia [journal article]. Journal of Ecological Engineering, 25(2), 126-139. https://doi.org/10.12911/22998993/176772

Santos, C. F., Andrade, R. I. C., Procópio, P. M. H., Paulo, C. J., & and Silva, B. M. (2022). A Simple Gravimetric Methodology to Determine Soil Particle Density. Communications in Soil Science and Plant Analysis, 53(13), 1623-1629. https://doi.org/10.1080/00103624.2022.2063310

Schiedung, M., Bellè, S.-L., Malhotra, A., & Abiven, S. (2022). Organic carbon stocks, quality and prediction in permafrost-affected forest soils in North Canada. CATENA, 213, 106194. https://doi.org/10.1016/j.catena.2022.106194

Schillaci, C., Perego, A., Valkama, E., Märker, M., Saia, S., Veronesi, F., . . . Acutis, M. (2021). New pedotransfer approaches to predict soil bulk density using WoSIS soil data and environmental covariates in Mediterranean agro-ecosystems. Science of The Total Environment, 780, 146609. https://doi.org/10.1016/j.scitotenv.2021.146609

Segara, R. O., Hariyadi, Sukarman, & Santoso, K. D. (2019). Fresh fruit bunch production of oil palm plantation in the lowland area of Sembilang Dangku Landscape. IOP Conference Series: Earth and Environmental Science, 336(1), 012020. https://doi.org/10.1088/1755-1315/336/1/012020

Shaheb, M. R., Venkatesh, R., & Shearer, S. A. (2021). A Review on the Effect of Soil Compaction and its Management for Sustainable Crop Production. Journal of Biosystems Engineering, 46(4), 417-439. https://doi.org/10.1007/s42853-021-00117-7

Sinclair, A. L., Graham, L. L. B., Putra, E. I., Saharjo, B. H., Applegate, G., Grover, S. P., & Cochrane, M. A. (2020). Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland. Science of The Total Environment, 699, 134199. https://doi.org/10.1016/j.scitotenv.2019.134199

Sukarman, S., Saidy, A. R., Rusmayadi, G., Adriani, D. E., Primananda, S., Suwardi, S., . . . Fitriana, C. D. A. (2022). Effect of water deficit of Ultisols, Entisols, Spodosols, and Histosols on oil palm productivity in Central Kalimantan. Sains Tanah Journal of Soil Science and Agroclimatology, 19(2), 12. https://doi.org/10.20961/stjssa.v19i2.65455

Suleymanov, A., Abakumov, E., Nizamutdinov, T., Polyakov, V., Shevchenko, E., & Makarova, M. (2023). Soil organic carbon stock retrieval from Sentinel-2A using a hybrid approach. Environmental Monitoring and Assessment, 196(1), 23. https://doi.org/10.1007/s10661-023-12172-y

Sun, X.-L., Wang, X.-Q., & Wang, H.-L. (2019). Comparison of estimated soil bulk density using proximal soil sensing and pedotransfer functions. Journal of Hydrology, 579, 124227. https://doi.org/10.1016/j.jhydrol.2019.124227

Syahza, A., & Asmit, B. (2020). Development of palm oil sector and future challenge in Riau Province, Indonesia. Journal of Science and Technology Policy Management, 11(2), 149-170. https://doi.org/10.1108/JSTPM-07-2018-0073

Tang, X., Hu, J., Lu, Y., Qiu, J., Dong, Y., & Li, B. (2022). Soil C, N, P stocks and stoichiometry as related to land use types and erosion conditions in lateritic red soil region, south China. CATENA, 210, 105888. https://doi.org/10.1016/j.catena.2021.105888

Tayebi, M., Fim Rosas, J. T., Mendes, W. d. S., Poppiel, R. R., Ostovari, Y., Ruiz, L. F. C., . . . Demattê, J. A. M. (2021). Drivers of Organic Carbon Stocks in Different LULC History and along Soil Depth for a 30 Years Image Time Series. Remote Sensing, 13(11), 2223. https://doi.org/10.3390/rs13112223

Van Looy, K., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., . . . Vereecken, H. (2017). Pedotransfer Functions in Earth System Science: Challenges and Perspectives. Reviews of Geophysics, 55(4), 1199-1256. https://doi.org/10.1002/2017RG000581

Waite, P.-A., Schuldt, B., Mathias Link, R., Breidenbach, N., Triadiati, T., Hennings, N., . . . Leuschner, C. (2019). Soil moisture regime and palm height influence embolism resistance in oil palm. Tree Physiology, 39(10), 1696-1712. https://doi.org/10.1093/treephys/tpz061

Wan Mohd Jaafar, W. S., Said, N. F. S., Abdul Maulud, K. N., Uning, R., Latif, M. T., Muhmad Kamarulzaman, A. M., . . . Takriff, M. S. (2020). Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests, 11(12), 1285. https://doi.org/10.3390/f11121285

Warzukni, W., & Jauharlina, J. (2023). The effectiveness of young coconut waste biochar application and goat manures to entisol soil on tomatoes (Solanum lycopersicum L.) vegetative growth. IOP Conference Series: Earth and Environmental Science, 1183(1), 012114. https://doi.org/10.1088/1755-1315/1183/1/012114

Weber, T. K. D., Weihermüller, L., Nemes, A., Bechtold, M., Degré, A., Diamantopoulos, E., . . . Bonetti, S. (2024). Hydro-pedotransfer functions: a roadmap for future development. Hydrol. Earth Syst. Sci., 28(14), 3391-3433. https://doi.org/10.5194/hess-28-3391-2024

Wenzel, W. W., Duboc, O., Golestanifard, A., Holzinger, C., Mayr, K., Reiter, J., & Schiefer, A. (2022). Soil and land use factors control organic carbon status and accumulation in agricultural soils of Lower Austria. Geoderma, 409, 115595. https://doi.org/10.1016/j.geoderma.2021.115595

Xue, B., Huang, L., Li, X., Lu, J., Gao, R., Kamran, M., & Fahad, S. (2022). Effect of Clay Mineralogy and Soil Organic Carbon in Aggregates under Straw Incorporation. Agronomy, 12(2), 534. https://doi.org/10.3390/agronomy12020534

Yost, J. L., & Hartemink, A. E. (2019). Chapter Four - Soil organic carbon in sandy soils: A review. In D. L. Sparks (Ed.), Advances in Agronomy (Vol. 158, pp. 217-310). Academic Press. https://doi.org/10.1016/bs.agron.2019.07.004

Zhang, J., Zhang, M., Huang, S., & Zha, X. (2020). Assessing spatial variability of soil organic carbon and total nitrogen in eroded hilly region of subtropical China. PLOS ONE, 15(12), e0244322. https://doi.org/10.1371/journal.pone.0244322

Ziviani, M. M., Costa, E. M., Alves, A. S., Pinto, L. A. d. S. R., Pereira, M. G., & Anjos, L. H. C. d. (2024). Pedotransfer Functions in the Assessment of Fragile Mountainous Areas: Carbon and Nitrogen Stocks in Mountains in Southeastern Brazil. Revista de Gestão Social e Ambiental, 18(8), e06052. https://doi.org/10.24857/rgsa.v18n8-018

Refbacks

  • There are currently no refbacks.