Oxidized alkaline biochar and phosphate solubilizing bacteria mixture enhances direct seeded maize yield in an acid soil
Abstract
Keywords
Full Text:
PDFReferences
Abdulrahman, D. K., Othman, R., & Saud, H. M. (2016). Effects of empty fruit bunch biochar and nitrogen-fixing bacteria on soil properties and growth of sweet corn. Malaysian Journal of Soil Science, 20, 177-194. https://msss.com.my/mjss/Full%20Text/vol20/12-abdulrahman.pdf
Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of The Total Environment, 543, 295-306. https://doi.org/10.1016/j.scitotenv.2015.11.054
Ahmad, M., Wang, X., Hilger, T. H., Luqman, M., Nazli, F., Hussain, A., . . . Mustafa, A. (2020). Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy, 10(7), 1055. https://doi.org/10.3390/agronomy10071055
Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties1Louisiana Agricultural Experiment Station manuscript 99-21-0066.1. Bioresource Technology, 71(2), 113-123. https://doi.org/10.1016/S0960-8524(99)00070-X
Ajeng, A. A., Abdullah, R., Ling, T. C., Ismail, S., Lau, B. F., Ong, H. C., . . . Chang, J.-S. (2020). Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation, 20, 101168. https://doi.org/10.1016/j.eti.2020.101168
Ashraf, M., & Waheed, A. (1990). Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant and Soil, 128(2), 167-176. https://doi.org/10.1007/BF00011106
Aufa Ain, A. S., & Noraini, M. J. (2023). Effects of rice husk biochar (RHB) with combined inoculation of arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) on growth of maize (Zea mays). IOP Conference Series: Earth and Environmental Science, 1131(1), 012007. https://doi.org/10.1088/1755-1315/1131/1/012007
Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1), 21-37. https://doi.org/10.1007/s11104-023-05960-5
Bedassa, M. (2020). Soil acid management using biochar. International Journal of Agricultural Science and Food Technology, 6(2), 211-217. https://doi.org/10.17352/2455-815X.000076
Beqaj, B., Rroço, E., & Doko, A. (2016). Evaluation of nutrient leaching in pots under greenhouse condition. Albanian Journal of Agricultural Sciences, 15(1), 1-7.
Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39-46. https://journals.lww.com/soilsci/fulltext/1945/01000/determination_of_total,_organic,_and_available.6.aspx
Brtnicky, M., Mustafa, A., Hammerschmiedt, T., Kintl, A., Trakal, L., Beesley, L., . . . Holatko, J. (2023). Pre-activated biochar by fertilizers mitigates nutrient leaching and stimulates soil microbial activity. Chemical and Biological Technologies in Agriculture, 10(1), 57. https://doi.org/10.1186/s40538-023-00430-7
Ch'ng, H. Y., Haruna, A. O., Majid, N. M. N. A., & Jalloh, M. B. (2019). Improving soil phosphorus availability and yield of Zea mays L. using biochar and compost derived from agro-industrial wastes. Italian Journal of Agronomy, 14(1), 34-42. https://doi.org/10.4081/ija.2019.1107
Chen, J., Yu, J., Li, Z., Zhou, J., & Zhan, L. (2023). Ameliorating Effects of Biochar, Sheep Manure and Chicken Manure on Acidified Purple Soil. Agronomy, 13(4), 1142. https://doi.org/10.3390/agronomy13041142
Coats, W. (2014). UC COOPERATIVE EXTENSION CENTENNIAL: Improved leaching practices save water, reduce drainage problems. California Agriculture, 68(3), 77-77. https://doi.org/10.3733/ca.v068n03p77
Cottenie, A. (1980). Soil and Plant Testing As a Basis of Fertilizer Recommendations.
Deng, X., Long, C., Chen, L., Du, Y., Zhang, Z., Gan, L., & Zeng, Y. (2023). Special Microbial Communities Enhanced the Role of Aged Biochar in Reducing Cd Accumulation in Rice. Agronomy, 13(1), 81. https://doi.org/10.3390/agronomy13010081
Dragomir, V., Ioan Sebastian, B., Alina, B., Victor, P., Tanasă, L., & Horhocea, D. (2022). An overview of global maize market compared to Romanian production. Romanian Agriculture Research, 39, 535-544. https://doi.org/10.59665/rar3951
Eduah, J. O., Nartey, E. K., Abekoe, M. K., Breuning-Madsen, H., & Andersen, M. N. (2019). Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma, 341, 10-17. https://doi.org/10.1016/j.geoderma.2019.01.016
Fan, Y., Zhong, X., Lin, F., Liu, C., Yang, L., Wang, M., . . . Yang, Y. (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255. https://doi.org/10.1016/j.geoderma.2018.09.028
Gao, X., Yang, J., Liu, W., Li, X., Zhang, W., & Wang, A. (2023). Effects of alkaline biochar on nitrogen transformation with fertilizer in agricultural soil. Environmental Research, 233, 116084. https://doi.org/10.1016/j.envres.2023.116084
Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., & Nain, L. (2021). PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production [Review]. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.618230
Guan, T.-K., Wang, Q.-Y., Li, J.-S., Yan, H.-W., Chen, Q.-J., Sun, J., . . . Zhang, G.-Q. (2023). Biochar immobilized plant growth-promoting rhizobacteria enhanced the physicochemical properties, agronomic characters and microbial communities during lettuce seedling [Original Research]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1218205
Gupta, V., & Buch, A. (2019). Pseudomonas aeruginosa predominates as multifaceted rhizospheric bacteria with combined abilities of P-solubilization and biocontrol. J Pure Appl Microbiol, 13(1), 319-328. https://doi.org/10.22207/JPAM.13.1.35
Hasbullah, N. A., Ahmed, O. H., & Ab Majid, N. M. (2020). Effects of Amending Phosphatic Fertilizers with Clinoptilolite Zeolite on Phosphorus Availability and Its Fractionation in an Acid Soil. Applied Sciences, 10(9), 3162. https://doi.org/10.3390/app10093162
Heidari, E., Mohammadi, K., Pasari, B., Rokhzadi, A., & Sohrabi, Y. (2020). Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity. Soil Science and Plant Nutrition, 66(2), 255-267. https://doi.org/10.1080/00380768.2019.1704180
Huang, K., Li, M., Li, R., Rasul, F., Shahzad, S., Wu, C., . . . Aamer, M. (2023). Soil acidification and salinity: the importance of biochar application to agricultural soils [Review]. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1206820
Imperiali, N., Chiriboga, X., Schlaeppi, K., Fesselet, M., Villacrés, D., Jaffuel, G., . . . Campos-Herrera, R. (2017). Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance [Original Research]. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01809
Jensen, H. L. (1951). Notes on the biology of Azotobacter. Proceedings of the Society for Applied Bacteriology, 14(1), 89-94. https://doi.org/10.1111/j.1365-2672.1951.tb01997.x
Kashiani, P. (2012). Genetic potential of selected sweet corn inbred lines and analysis of their combining ability assisted by microsatellite DNA markers [PhD Thesis, Universiti Putra Malaysia].
Keeney, D. R., & Nelson, D. W. (1982). Nitrogen—Inorganic Forms. In Methods of Soil Analysis (pp. 643-698). https://doi.org/10.2134/agronmonogr9.2.2ed.c33
Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants, 12(15), 2861. https://doi.org/10.3390/plants12152861
Li, Y., Wang, C., Gao, S., Wang, P., Qiu, J., & Shang, S. (2021). Impacts of simulated nitrogen deposition on soil enzyme activity in a northern temperate forest ecosystem depend on the form and level of added nitrogen. European Journal of Soil Biology, 103, 103287. https://doi.org/10.1016/j.ejsobi.2021.103287
Lija, M., Haruna, A. O., & Kasim, S. (2017). Maize (Zea mays L.) nutrient use efficiency as affected by formulated fertilizer with Clinoptilolite Zeolite. Emirates Journal of Food and Agriculture, 26(3), 284-292. https://doi.org/10.9755/ejfa.v26i3.16183
Malboobi, M. A., Sabet, M. S., Zamani, K., Lohrasebi, T., Fathi, Z., & Zamani, J. (2022). Acid Phosphatases Roles in Plant Performance. In P. Jeschke & E. B. Starikov (Eds.), Agricultural Biocatalysis (pp. 117-157). Jenny Stanford Publishing. https://doi.org/10.1201/9781003313106
Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, & B. Hawrylak-Nowak (Eds.), Plant Nutrients and Abiotic Stress Tolerance (pp. 171-190). Springer Singapore. https://doi.org/10.1007/978-981-10-9044-8_7
Malik, L., Sanaullah, M., Mahmood, F., Hussain, S., Siddique, M. H., Anwar, F., & Shahzad, T. (2022). Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chemical and Biological Technologies in Agriculture, 9(1), 58. https://doi.org/10.1186/s40538-022-00327-x
Manpoong, C., De Mandal, S., Bangaruswamy, D. K., Perumal, R. C., Benny, J., Beena, P. S., . . . Tripathi, S. K. (2020). Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene, 23, 100625. https://doi.org/10.1016/j.mgene.2019.100625
Mosharrof, M., Uddin, M. K., Mia, S., Sulaiman, M. F., Shamsuzzaman, S. M., & Haque, A. N. A. (2022). Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize. Sustainability, 14(12), 7418. https://doi.org/10.3390/su14127418
Muchoka, J. P. (2021). Mycorrhizal Fungi Associated with Aspilia pluriseta And Phosphorus Availability on Sorghum Growth University of Embu].
Nabi, M. (2023). Chapter eleven - Role of microorganisms in plant nutrition and soil health. In T. Aftab & K. R. Hakeem (Eds.), Sustainable Plant Nutrition (pp. 263-282). Academic Press. https://doi.org/10.1016/B978-0-443-18675-2.00016-X
Nawaz, F., Rafeeq, R., Majeed, S., Ismail, M. S., Ahsan, M., Ahmad, K. S., . . . Haider, G. (2023). Biochar Amendment in Combination with Endophytic Bacteria Stimulates Photosynthetic Activity and Antioxidant Enzymes to Improve Soybean Yield Under Drought Stress. Journal of Soil Science and Plant Nutrition, 23(1), 746-760. https://doi.org/10.1007/s42729-022-01079-1
Ofoe, R., Thomas, R. H., Asiedu, S. K., Wang-Pruski, G., Fofana, B., & Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms [Review]. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1085998
Ontman, R., Groffman, P. M., Driscoll, C. T., & Cheng, Z. (2023). Surprising relationships between soil pH and microbial biomass and activity in a northern hardwood forest. Biogeochemistry, 163(3), 265-277. https://doi.org/10.1007/s10533-023-01031-0
Ouyang, P., Narayanan, M., Shi, X., Chen, X., Li, Z., Luo, Y., & Ma, Y. (2023). Integrating biochar and bacteria for sustainable remediation of metal-contaminated soils. Biochar, 5(1), 63. https://doi.org/10.1007/s42773-023-00265-3
Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., . . . Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3-22. https://doi.org/10.1007/s42773-019-00009-2
Parkinson, D., Gray, T. R. G., & Williams, S. T. (1971). Methods for studying the ecology of soil micro-organisms Oxford, Blackwell Scientific Publications for the International Biological Programme.
Pastore, G., Kernchen, S., & Spohn, M. (2020). Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils. Soil Biology and Biochemistry, 151, 108050. https://doi.org/10.1016/j.soilbio.2020.108050
Rabileh, M. A., Shamshuddin, J., Panhwar, Q. A., Rosenani, A. B., & Anuar, A. R. (2015). Effects of biochar and/or dolomitic limestone application on the properties of Ultisol cropped to maize under glasshouse conditions. Canadian Journal of Soil Science, 95(1), 37-47. https://doi.org/10.4141/cjss-2014-067
Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68. https://doi.org/10.1007/s42729-020-00342-7
Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., & Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23(3), 2230-2248. https://doi.org/10.1007/s11356-015-5697-7
Rossati, K. F., Figueiredo, C. C. d., & Mendes, G. d. O. (2023). Aspergillus niger Enhances the Efficiency of Sewage Sludge Biochar as a Sustainable Phosphorus Source. Sustainability, 15(8), 6940. https://doi.org/10.3390/su15086940
Rowell, D. L. (2014). Soil science: Methods & applications. Routledge. https://doi.org/10.4324/9781315844855
Schalk, I. J., & Perraud, Q. (2023). and its multiple strategies to access iron. Environmental Microbiology, 25(4), 811-831. https://doi.org/10.1111/1462-2920.16328
Schmalenberger, A., & Fox, A. (2016). Chapter Three - Bacterial Mobilization of Nutrients From Biochar-Amended Soils. In S. Sariaslani & G. M. Gadd (Eds.), Advances in Applied Microbiology (Vol. 94, pp. 109-159). Academic Press. https://doi.org/10.1016/bs.aambs.2015.10.001
Soares, A. S., Nascimento, V. L., de Oliveira, E. E., Jumbo, L. V., dos Santos, G. R., Queiroz, L. L., . . . de Souza Aguiar, R. W. (2023). Pseudomonas aeruginosa and Bacillus cereus Isolated from Brazilian Cerrado Soil Act as Phosphate-Solubilizing Bacteria. Current Microbiology, 80(5), 146. https://doi.org/10.1007/s00284-023-03260-w
Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO land and water science report 05/09, 64 pp. https://www.build-a-gasifier.com/PDF/BiocharClimateChangeSoil_WfHC_pdf%20Standard.pdf
Sorrenti, G., & Toselli, M. (2016). Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems & Environment, 226, 56-64. https://doi.org/10.1016/j.agee.2016.04.024
Sun, H., Wang, Y., & Wu, Q. (2022). Synergistic Effects of Biochar and Microbes on Soil Remediation. Highlights in Science, Engineering and Technology, 26, 303-311. https://doi.org/10.54097/hset.v26i.3990
Teng, Z., Shao, W., Zhang, K., Yu, F., Huo, Y., & Li, M. (2020). Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/ nanoscale zero valent iron composite. Journal of Hazardous Materials, 384, 121505. https://doi.org/10.1016/j.jhazmat.2019.121505
Tiessen, H. (2008). Phosphorus in the global environment. In P. J. White & J. P. Hammond (Eds.), The Ecophysiology of Plant-Phosphorus Interactions (pp. 1-7). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8435-5_1
Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074
Tusar, H. M., Uddin, M. K., Mia, S., Suhi, A. A., Wahid, S. B. A., Kasim, S., . . . Anwar, F. (2023). Biochar-Acid Soil Interactions—A Review. Sustainability, 15(18), 13366. https://doi.org/10.3390/su151813366
Wang, C., Pan, G., Lu, X., & Qi, W. (2023). Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering [Perspective]. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1181078
Wang, S., Song, M., Wang, C., Dou, X., Wang, X., & Li, X. (2023). Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of The Total Environment, 904, 166403. https://doi.org/10.1016/j.scitotenv.2023.166403
Wu, X., Peng, J., Liu, P., Bei, Q., Rensing, C., Li, Y., . . . Cui, Z. (2021). Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Science of The Total Environment, 785, 147329. https://doi.org/10.1016/j.scitotenv.2021.147329
Yang, L., Wu, Y., Wang, Y., An, W., Jin, J., Sun, K., & Wang, X. (2021). Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of The Total Environment, 758, 143657. https://doi.org/10.1016/j.scitotenv.2020.143657
Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S. T., Tian, Y., Zhu, Y., . . . Liu, X. (2016). Optimal Leaf Positions for SPAD Meter Measurement in Rice [Methods]. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00719
Zaidun, S. W., Jalloh, M. B., Awang, A., Sam, L. M., Besar, N. A., Musta, B., . . . Omar, L. (2019). Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 8(1), 1-10. https://doi.org/10.18393/ejss.468100
Refbacks
- There are currently no refbacks.