Oxidized alkaline biochar and phosphate solubilizing bacteria mixture enhances direct seeded maize yield in an acid soil

Hachib Mohammad Tusar, Md. Kamal Uddin, Shamim Mia, Susilawati Kasim, Samsuri Bin Abd. Wahid, Tomoyuki Makino, Zakaria Solaiman

Abstract

Maize is an important cereal in many developed and developing countries of the world.  One of the primary challenges for maize cultivation is soil acidity. Acidic soil is a major constrain in achieving food security requiring sustainable solutions. Biochar, a pyrogenic carbon-rich material, carries reactive surfaces (i.e., high surface area and variable surface charges). Therefore, it facilitates nutrient retention in soil and gradual release to plants, thereby supporting crop growth. However, the combine effects of functionalized biochar with microbes on phosphorus (P) bioavailability and plant performance remain unclear. This study investigates the application of different oxidized biochars (i.e.,fresh rice husk biochar (RHB), pH adjusted oxidized RHB and control) and phosphate solubilizing bacteria (i.e., Pseudomonas aeruginosa, and control) on soil properties including phosphorus dynamics and the performance of maize grown in an acid soil.  Biochar was oxidized using 10% hydrogen peroxide while the pH was adjusted to 8.5. Maize was grown in pots having 20 kg of soil or soil-biochar mixture. Overall, biochar and microbes treatments increased soil phosphorus bioavailability and maize yield with a greater effects in the oxidized biochar giving a significant biochar × microbes interactions. Specifically, oxidized biochar when applied with Pseudomonas aeruginosa  increased P availability by 380 % which then contributed to yield increment (291%). We also observed a significant reduction in available aluminum (Al) concentration (40% ) compare to the control. These improvement in yield might have occurred due to an increase soil pH, P bioavailability (r2= 0.74), and a reduction in Al toxicity (r2= 0.36).Findings of this study could have significant implications for crop production in acidic soil.

Keywords

Acidic soil; Maize; Microbes; Phosphorus; Pyrogenic carbon

Full Text:

PDF

References

Abdulrahman, D. K., Othman, R., & Saud, H. M. (2016). Effects of empty fruit bunch biochar and nitrogen-fixing bacteria on soil properties and growth of sweet corn. Malaysian Journal of Soil Science, 20, 177-194. https://msss.com.my/mjss/Full%20Text/vol20/12-abdulrahman.pdf

Agegnehu, G., Bass, A. M., Nelson, P. N., & Bird, M. I. (2016). Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Science of The Total Environment, 543, 295-306. https://doi.org/10.1016/j.scitotenv.2015.11.054

Ahmad, M., Wang, X., Hilger, T. H., Luqman, M., Nazli, F., Hussain, A., . . . Mustafa, A. (2020). Evaluating Biochar-Microbe Synergies for Improved Growth, Yield of Maize, and Post-Harvest Soil Characteristics in a Semi-Arid Climate. Agronomy, 10(7), 1055. https://doi.org/10.3390/agronomy10071055

Ahmedna, M., Marshall, W. E., & Rao, R. M. (2000). Production of granular activated carbons from select agricultural by-products and evaluation of their physical, chemical and adsorption properties1Louisiana Agricultural Experiment Station manuscript 99-21-0066.1. Bioresource Technology, 71(2), 113-123. https://doi.org/10.1016/S0960-8524(99)00070-X

Ajeng, A. A., Abdullah, R., Ling, T. C., Ismail, S., Lau, B. F., Ong, H. C., . . . Chang, J.-S. (2020). Bioformulation of biochar as a potential inoculant carrier for sustainable agriculture. Environmental Technology & Innovation, 20, 101168. https://doi.org/10.1016/j.eti.2020.101168

Ashraf, M., & Waheed, A. (1990). Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant and Soil, 128(2), 167-176. https://doi.org/10.1007/BF00011106

Aufa Ain, A. S., & Noraini, M. J. (2023). Effects of rice husk biochar (RHB) with combined inoculation of arbuscular mycorrhizal fungi (AMF) and phosphate solubilizing bacteria (PSB) on growth of maize (Zea mays). IOP Conference Series: Earth and Environmental Science, 1131(1), 012007. https://doi.org/10.1088/1755-1315/1131/1/012007

Barrow, N. J., & Hartemink, A. E. (2023). The effects of pH on nutrient availability depend on both soils and plants. Plant and Soil, 487(1), 21-37. https://doi.org/10.1007/s11104-023-05960-5

Bedassa, M. (2020). Soil acid management using biochar. International Journal of Agricultural Science and Food Technology, 6(2), 211-217. https://doi.org/10.17352/2455-815X.000076

Beqaj, B., Rroço, E., & Doko, A. (2016). Evaluation of nutrient leaching in pots under greenhouse condition. Albanian Journal of Agricultural Sciences, 15(1), 1-7.

Bray, R. H., & Kurtz, L. T. (1945). Determination of total, organic, and available forms of phosphorus in soils. Soil Science, 59(1), 39-46. https://journals.lww.com/soilsci/fulltext/1945/01000/determination_of_total,_organic,_and_available.6.aspx

Brtnicky, M., Mustafa, A., Hammerschmiedt, T., Kintl, A., Trakal, L., Beesley, L., . . . Holatko, J. (2023). Pre-activated biochar by fertilizers mitigates nutrient leaching and stimulates soil microbial activity. Chemical and Biological Technologies in Agriculture, 10(1), 57. https://doi.org/10.1186/s40538-023-00430-7

Ch'ng, H. Y., Haruna, A. O., Majid, N. M. N. A., & Jalloh, M. B. (2019). Improving soil phosphorus availability and yield of Zea mays L. using biochar and compost derived from agro-industrial wastes. Italian Journal of Agronomy, 14(1), 34-42. https://doi.org/10.4081/ija.2019.1107

Chen, J., Yu, J., Li, Z., Zhou, J., & Zhan, L. (2023). Ameliorating Effects of Biochar, Sheep Manure and Chicken Manure on Acidified Purple Soil. Agronomy, 13(4), 1142. https://doi.org/10.3390/agronomy13041142

Coats, W. (2014). UC COOPERATIVE EXTENSION CENTENNIAL: Improved leaching practices save water, reduce drainage problems. California Agriculture, 68(3), 77-77. https://doi.org/10.3733/ca.v068n03p77

Cottenie, A. (1980). Soil and Plant Testing As a Basis of Fertilizer Recommendations.

Deng, X., Long, C., Chen, L., Du, Y., Zhang, Z., Gan, L., & Zeng, Y. (2023). Special Microbial Communities Enhanced the Role of Aged Biochar in Reducing Cd Accumulation in Rice. Agronomy, 13(1), 81. https://doi.org/10.3390/agronomy13010081

Dragomir, V., Ioan Sebastian, B., Alina, B., Victor, P., Tanasă, L., & Horhocea, D. (2022). An overview of global maize market compared to Romanian production. Romanian Agriculture Research, 39, 535-544. https://doi.org/10.59665/rar3951

Eduah, J. O., Nartey, E. K., Abekoe, M. K., Breuning-Madsen, H., & Andersen, M. N. (2019). Phosphorus retention and availability in three contrasting soils amended with rice husk and corn cob biochar at varying pyrolysis temperatures. Geoderma, 341, 10-17. https://doi.org/10.1016/j.geoderma.2019.01.016

Fan, Y., Zhong, X., Lin, F., Liu, C., Yang, L., Wang, M., . . . Yang, Y. (2019). Responses of soil phosphorus fractions after nitrogen addition in a subtropical forest ecosystem: Insights from decreased Fe and Al oxides and increased plant roots. Geoderma, 337, 246-255. https://doi.org/10.1016/j.geoderma.2018.09.028

Gao, X., Yang, J., Liu, W., Li, X., Zhang, W., & Wang, A. (2023). Effects of alkaline biochar on nitrogen transformation with fertilizer in agricultural soil. Environmental Research, 233, 116084. https://doi.org/10.1016/j.envres.2023.116084

Grover, M., Bodhankar, S., Sharma, A., Sharma, P., Singh, J., & Nain, L. (2021). PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production [Review]. Frontiers in Sustainable Food Systems, 4. https://doi.org/10.3389/fsufs.2020.618230

Guan, T.-K., Wang, Q.-Y., Li, J.-S., Yan, H.-W., Chen, Q.-J., Sun, J., . . . Zhang, G.-Q. (2023). Biochar immobilized plant growth-promoting rhizobacteria enhanced the physicochemical properties, agronomic characters and microbial communities during lettuce seedling [Original Research]. Frontiers in Microbiology, 14. https://doi.org/10.3389/fmicb.2023.1218205

Gupta, V., & Buch, A. (2019). Pseudomonas aeruginosa predominates as multifaceted rhizospheric bacteria with combined abilities of P-solubilization and biocontrol. J Pure Appl Microbiol, 13(1), 319-328. https://doi.org/10.22207/JPAM.13.1.35

Hasbullah, N. A., Ahmed, O. H., & Ab Majid, N. M. (2020). Effects of Amending Phosphatic Fertilizers with Clinoptilolite Zeolite on Phosphorus Availability and Its Fractionation in an Acid Soil. Applied Sciences, 10(9), 3162. https://doi.org/10.3390/app10093162

Heidari, E., Mohammadi, K., Pasari, B., Rokhzadi, A., & Sohrabi, Y. (2020). Combining the phosphate solubilizing microorganisms with biochar types in order to improve safflower yield and soil enzyme activity. Soil Science and Plant Nutrition, 66(2), 255-267. https://doi.org/10.1080/00380768.2019.1704180

Huang, K., Li, M., Li, R., Rasul, F., Shahzad, S., Wu, C., . . . Aamer, M. (2023). Soil acidification and salinity: the importance of biochar application to agricultural soils [Review]. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1206820

Imperiali, N., Chiriboga, X., Schlaeppi, K., Fesselet, M., Villacrés, D., Jaffuel, G., . . . Campos-Herrera, R. (2017). Combined Field Inoculations of Pseudomonas Bacteria, Arbuscular Mycorrhizal Fungi, and Entomopathogenic Nematodes and their Effects on Wheat Performance [Original Research]. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01809

Jensen, H. L. (1951). Notes on the biology of Azotobacter. Proceedings of the Society for Applied Bacteriology, 14(1), 89-94. https://doi.org/10.1111/j.1365-2672.1951.tb01997.x

Kashiani, P. (2012). Genetic potential of selected sweet corn inbred lines and analysis of their combining ability assisted by microsatellite DNA markers [PhD Thesis, Universiti Putra Malaysia].

Keeney, D. R., & Nelson, D. W. (1982). Nitrogen—Inorganic Forms. In Methods of Soil Analysis (pp. 643-698). https://doi.org/10.2134/agronmonogr9.2.2ed.c33

Khan, F., Siddique, A. B., Shabala, S., Zhou, M., & Zhao, C. (2023). Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants, 12(15), 2861. https://doi.org/10.3390/plants12152861

Li, Y., Wang, C., Gao, S., Wang, P., Qiu, J., & Shang, S. (2021). Impacts of simulated nitrogen deposition on soil enzyme activity in a northern temperate forest ecosystem depend on the form and level of added nitrogen. European Journal of Soil Biology, 103, 103287. https://doi.org/10.1016/j.ejsobi.2021.103287

Lija, M., Haruna, A. O., & Kasim, S. (2017). Maize (Zea mays L.) nutrient use efficiency as affected by formulated fertilizer with Clinoptilolite Zeolite. Emirates Journal of Food and Agriculture, 26(3), 284-292. https://doi.org/10.9755/ejfa.v26i3.16183

Malboobi, M. A., Sabet, M. S., Zamani, K., Lohrasebi, T., Fathi, Z., & Zamani, J. (2022). Acid Phosphatases Roles in Plant Performance. In P. Jeschke & E. B. Starikov (Eds.), Agricultural Biocatalysis (pp. 117-157). Jenny Stanford Publishing. https://doi.org/10.1201/9781003313106

Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus Nutrition: Plant Growth in Response to Deficiency and Excess. In M. Hasanuzzaman, M. Fujita, H. Oku, K. Nahar, & B. Hawrylak-Nowak (Eds.), Plant Nutrients and Abiotic Stress Tolerance (pp. 171-190). Springer Singapore. https://doi.org/10.1007/978-981-10-9044-8_7

Malik, L., Sanaullah, M., Mahmood, F., Hussain, S., Siddique, M. H., Anwar, F., & Shahzad, T. (2022). Unlocking the potential of co-applied biochar and plant growth-promoting rhizobacteria (PGPR) for sustainable agriculture under stress conditions. Chemical and Biological Technologies in Agriculture, 9(1), 58. https://doi.org/10.1186/s40538-022-00327-x

Manpoong, C., De Mandal, S., Bangaruswamy, D. K., Perumal, R. C., Benny, J., Beena, P. S., . . . Tripathi, S. K. (2020). Linking rhizosphere soil biochemical and microbial community characteristics across different land use systems in mountainous region in Northeast India. Meta Gene, 23, 100625. https://doi.org/10.1016/j.mgene.2019.100625

Mosharrof, M., Uddin, M. K., Mia, S., Sulaiman, M. F., Shamsuzzaman, S. M., & Haque, A. N. A. (2022). Influence of Rice Husk Biochar and Lime in Reducing Phosphorus Application Rate in Acid Soil: A Field Trial with Maize. Sustainability, 14(12), 7418. https://doi.org/10.3390/su14127418

Muchoka, J. P. (2021). Mycorrhizal Fungi Associated with Aspilia pluriseta And Phosphorus Availability on Sorghum Growth University of Embu].

Nabi, M. (2023). Chapter eleven - Role of microorganisms in plant nutrition and soil health. In T. Aftab & K. R. Hakeem (Eds.), Sustainable Plant Nutrition (pp. 263-282). Academic Press. https://doi.org/10.1016/B978-0-443-18675-2.00016-X

Nawaz, F., Rafeeq, R., Majeed, S., Ismail, M. S., Ahsan, M., Ahmad, K. S., . . . Haider, G. (2023). Biochar Amendment in Combination with Endophytic Bacteria Stimulates Photosynthetic Activity and Antioxidant Enzymes to Improve Soybean Yield Under Drought Stress. Journal of Soil Science and Plant Nutrition, 23(1), 746-760. https://doi.org/10.1007/s42729-022-01079-1

Ofoe, R., Thomas, R. H., Asiedu, S. K., Wang-Pruski, G., Fofana, B., & Abbey, L. (2023). Aluminum in plant: Benefits, toxicity and tolerance mechanisms [Review]. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.1085998

Ontman, R., Groffman, P. M., Driscoll, C. T., & Cheng, Z. (2023). Surprising relationships between soil pH and microbial biomass and activity in a northern hardwood forest. Biogeochemistry, 163(3), 265-277. https://doi.org/10.1007/s10533-023-01031-0

Ouyang, P., Narayanan, M., Shi, X., Chen, X., Li, Z., Luo, Y., & Ma, Y. (2023). Integrating biochar and bacteria for sustainable remediation of metal-contaminated soils. Biochar, 5(1), 63. https://doi.org/10.1007/s42773-023-00265-3

Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., . . . Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3-22. https://doi.org/10.1007/s42773-019-00009-2

Parkinson, D., Gray, T. R. G., & Williams, S. T. (1971). Methods for studying the ecology of soil micro-organisms Oxford, Blackwell Scientific Publications for the International Biological Programme.

Pastore, G., Kernchen, S., & Spohn, M. (2020). Microbial solubilization of silicon and phosphorus from bedrock in relation to abundance of phosphorus-solubilizing bacteria in temperate forest soils. Soil Biology and Biochemistry, 151, 108050. https://doi.org/10.1016/j.soilbio.2020.108050

Rabileh, M. A., Shamshuddin, J., Panhwar, Q. A., Rosenani, A. B., & Anuar, A. R. (2015). Effects of biochar and/or dolomitic limestone application on the properties of Ultisol cropped to maize under glasshouse conditions. Canadian Journal of Soil Science, 95(1), 37-47. https://doi.org/10.4141/cjss-2014-067

Rawat, P., Das, S., Shankhdhar, D., & Shankhdhar, S. C. (2021). Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21(1), 49-68. https://doi.org/10.1007/s42729-020-00342-7

Rizwan, M., Ali, S., Qayyum, M. F., Ibrahim, M., Zia-ur-Rehman, M., Abbas, T., & Ok, Y. S. (2016). Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environmental Science and Pollution Research, 23(3), 2230-2248. https://doi.org/10.1007/s11356-015-5697-7

Rossati, K. F., Figueiredo, C. C. d., & Mendes, G. d. O. (2023). Aspergillus niger Enhances the Efficiency of Sewage Sludge Biochar as a Sustainable Phosphorus Source. Sustainability, 15(8), 6940. https://doi.org/10.3390/su15086940

Rowell, D. L. (2014). Soil science: Methods & applications. Routledge. https://doi.org/10.4324/9781315844855

Schalk, I. J., & Perraud, Q. (2023). and its multiple strategies to access iron. Environmental Microbiology, 25(4), 811-831. https://doi.org/10.1111/1462-2920.16328

Schmalenberger, A., & Fox, A. (2016). Chapter Three - Bacterial Mobilization of Nutrients From Biochar-Amended Soils. In S. Sariaslani & G. M. Gadd (Eds.), Advances in Applied Microbiology (Vol. 94, pp. 109-159). Academic Press. https://doi.org/10.1016/bs.aambs.2015.10.001

Soares, A. S., Nascimento, V. L., de Oliveira, E. E., Jumbo, L. V., dos Santos, G. R., Queiroz, L. L., . . . de Souza Aguiar, R. W. (2023). Pseudomonas aeruginosa and Bacillus cereus Isolated from Brazilian Cerrado Soil Act as Phosphate-Solubilizing Bacteria. Current Microbiology, 80(5), 146. https://doi.org/10.1007/s00284-023-03260-w

Sohi, S., Lopez-Capel, E., Krull, E., & Bol, R. (2009). Biochar, climate change and soil: A review to guide future research. CSIRO land and water science report 05/09, 64 pp. https://www.build-a-gasifier.com/PDF/BiocharClimateChangeSoil_WfHC_pdf%20Standard.pdf

Sorrenti, G., & Toselli, M. (2016). Soil leaching as affected by the amendment with biochar and compost. Agriculture, Ecosystems & Environment, 226, 56-64. https://doi.org/10.1016/j.agee.2016.04.024

Sun, H., Wang, Y., & Wu, Q. (2022). Synergistic Effects of Biochar and Microbes on Soil Remediation. Highlights in Science, Engineering and Technology, 26, 303-311. https://doi.org/10.54097/hset.v26i.3990

Teng, Z., Shao, W., Zhang, K., Yu, F., Huo, Y., & Li, M. (2020). Enhanced passivation of lead with immobilized phosphate solubilizing bacteria beads loaded with biochar/ nanoscale zero valent iron composite. Journal of Hazardous Materials, 384, 121505. https://doi.org/10.1016/j.jhazmat.2019.121505

Tiessen, H. (2008). Phosphorus in the global environment. In P. J. White & J. P. Hammond (Eds.), The Ecophysiology of Plant-Phosphorus Interactions (pp. 1-7). Springer Netherlands. https://doi.org/10.1007/978-1-4020-8435-5_1

Timofeeva, A. M., Galyamova, M. R., & Sedykh, S. E. (2023). Plant Growth-Promoting Soil Bacteria: Nitrogen Fixation, Phosphate Solubilization, Siderophore Production, and Other Biological Activities. Plants, 12(24), 4074. https://doi.org/10.3390/plants12244074

Tusar, H. M., Uddin, M. K., Mia, S., Suhi, A. A., Wahid, S. B. A., Kasim, S., . . . Anwar, F. (2023). Biochar-Acid Soil Interactions—A Review. Sustainability, 15(18), 13366. https://doi.org/10.3390/su151813366

Wang, C., Pan, G., Lu, X., & Qi, W. (2023). Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering [Perspective]. Frontiers in Bioengineering and Biotechnology, 11. https://doi.org/10.3389/fbioe.2023.1181078

Wang, S., Song, M., Wang, C., Dou, X., Wang, X., & Li, X. (2023). Mechanisms underlying soil microbial regulation of available phosphorus in a temperate forest exposed to long-term nitrogen addition. Science of The Total Environment, 904, 166403. https://doi.org/10.1016/j.scitotenv.2023.166403

Wu, X., Peng, J., Liu, P., Bei, Q., Rensing, C., Li, Y., . . . Cui, Z. (2021). Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Science of The Total Environment, 785, 147329. https://doi.org/10.1016/j.scitotenv.2021.147329

Yang, L., Wu, Y., Wang, Y., An, W., Jin, J., Sun, K., & Wang, X. (2021). Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of The Total Environment, 758, 143657. https://doi.org/10.1016/j.scitotenv.2020.143657

Yuan, Z., Cao, Q., Zhang, K., Ata-Ul-Karim, S. T., Tian, Y., Zhu, Y., . . . Liu, X. (2016). Optimal Leaf Positions for SPAD Meter Measurement in Rice [Methods]. Frontiers in Plant Science, 7. https://doi.org/10.3389/fpls.2016.00719

Zaidun, S. W., Jalloh, M. B., Awang, A., Sam, L. M., Besar, N. A., Musta, B., . . . Omar, L. (2019). Biochar and clinoptilolite zeolite on selected chemical properties of soil cultivated with maize (Zea mays L.). EURASIAN JOURNAL OF SOIL SCIENCE (EJSS), 8(1), 1-10. https://doi.org/10.18393/ejss.468100

Refbacks

  • There are currently no refbacks.