Enhancing peppermint growth: Investigating the interplay of Biochar and Nitrogen levels

Hasan Haghighatnia, Ebrahim Talebi, Maryam Khosravi Nezhad

Abstract

Peppermint (Mentha piperita) is valued for its medicinal properties and applications in the food and health industries. However, optimizing growth conditions to enhance yield and quality remains challenging. The study aimed to evaluate the impact of nitrogen and biochar on peppermint growth, elemental content, and biochemical composition, using a factorial experiment with a randomized block design and four-pot replications during the 2022-2023 crop year. Biochar levels up to 2% by weight increased plant height by 25%, chlorophyll index by 20%, leaf count by 18%, and dry weights of shoots and roots by 15%, but declined beyond this threshold. Nitrogen levels up to 75 mg per gram of soil increased plant height by 33.8%, chlorophyll index by 30%, and dry weights of aerial organs by 28%. Elemental concentrations in aerial organs peaked at 3% biochar, increasing potassium by 22%, phosphorus by 18%, and calcium by 15%, while zinc and copper decreased by 10% and 12%, respectively. Anthocyanin, flavonoid, and total phenol concentrations decreased by 20%, 30%, and 35% respectively with increasing biochar and nitrogen levels. Applying up to 2% biochar by weight optimizes peppermint yield. Nitrogen mitigates adverse effects of high biochar levels, with 50 mg nitrogen recommended at 2% biochar for optimal yield. These findings offer sustainable agricultural practices to improve crop productivity in nutrient-deficient soils and promote environmentally friendly agricultural practices.

Keywords

Biochar; Biochemical compounds; Elemental concentrations; Growth indicators; Nitrogen

Full Text:

PDF

References

Alkharabsheh, H. M., Seleiman, M. F., Battaglia, M. L., Shami, A., Jalal, R. S., Alhammad, B. A., . . . Al-Saif, A. M. (2021). Biochar and Its Broad Impacts in Soil Quality and Fertility, Nutrient Leaching and Crop Productivity: A Review. Agronomy, 11(5), 993. https://doi.org/10.3390/agronomy11050993

Atkinson, R. G. (2018). Phenylpropenes: Occurrence, Distribution, and Biosynthesis in Fruit. Journal of Agricultural and Food Chemistry, 66(10), 2259-2272. https://doi.org/10.1021/acs.jafc.6b04696

Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar Role in the Sustainability of Agriculture and Environment. Sustainability, 13(3), 1330. https://doi.org/10.3390/su13031330

Barati, M., Bakhtiari, F., Mowla, D., & Safarzadeh, S. (2017). Total petroleum hydrocarbon degradation in contaminated soil as affected by plants growth and biochar. Environmental Earth Sciences, 76(20), 688. https://doi.org/10.1007/s12665-017-7017-7

Canatoy, R. C., & Daquiado, N. P. (2021). Fertilization influence on biomass yield and nutrient uptake of sweet corn in potentially hardsetting soil under no tillage. Bulletin of the National Research Centre, 45(1), 61. https://doi.org/10.1186/s42269-021-00526-w

Cole, J. C., Smith, M. W., Penn, C. J., Cheary, B. S., & Conaghan, K. J. (2016). Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Scientia Horticulturae, 211, 420-430. https://doi.org/10.1016/j.scienta.2016.09.028

Das, S. K., & Ghosh, G. K. (2023). Developing biochar-based slow-release N-P-K fertilizer for controlled nutrient release and its impact on soil health and yield. Biomass Conversion and Biorefinery, 13(14), 13051-13063. https://doi.org/10.1007/s13399-021-02069-6

de Souza, R., Meyer, J., Schoenfeld, R., da Costa, P. B., & Passaglia, L. M. P. (2015). Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Annals of Microbiology, 65(2), 951-964. https://doi.org/10.1007/s13213-014-0939-3

DeLuca, T. H., MacKenzie, M. D., & Gundale, M. J. (2009). Biochar Effects on Soil Nutrient Transformations. In J. Lehmann & S. Joseph (Eds.), Biochar for Environmental Management (Science and Technology). Routledge. https://doi.org/10.4324/9781849770552

Díaz-Maroto, M. C., Castillo, N., Castro-Vázquez, L., Torres, C. d., & Pérez-Coello, M. S. (2008). Authenticity Evaluation of Different Mints based on their Volatile Composition and Olfactory Profile. Journal of Essential Oil Bearing Plants, 11(1), 1-16. https://doi.org/10.1080/0972060X.2008.10643590

Euring, D., Bai, H., Janz, D., & Polle, A. (2014). Nitrogen-driven stem elongation in poplar is linked with wood modification and gene clusters for stress, photosynthesis and cell wall formation. BMC plant biology, 14(1), 391. https://doi.org/10.1186/s12870-014-0391-3

Fitriani, T., Pangaribuan, D. H., Niswati, A., & Yusnaini, S. (2020). Improving nitrogen fertilizer efficiency with the addition of compost extracts to kailan (Brassica oleracea L.) plants with wick hydroponic cultivation. Sains Tanah - Journal of Soil Science and Agroclimatology, 17(2), 122-128. https://doi.org/10.20961/stjssa.v17i2.41370

Ganeshamurthy, A., Kalaivanan, D., Selvakumar, G., & Panneerselvam, P. (2015). Nutrient management in horticultural crops. Indian Journal of Fertilisers, 11(12), 30-42. https://www.researchgate.net/profile/D-Kalaivanan/publication/289521055_Nutrient_Management_in_Horticultural_Crops/links/568e2d7308aef987e56694fc/Nutrient-Management-in-Horticultural-Crops.pdf

Ghias, S., Shirmardi, M., Meftahizadeh, H., & Dehestani Ardakani, M. (2022). Effect of Biochar and Hydrogel on Morphophysiological and Biochemical Characteristics of Common Sage (Salvia officinalis L.) under Drought Stress. Plant Productions, 45(1), 67-80. https://doi.org/10.22055/ppd.2021.36030.1962

Ghorbanalizadeh, A., & Akhani, H. (2022). Plant diversity of Hyrcanian relict forests: An annotated checklist, chorology and threat categories of endemic and near endemic vascular plant species. Plant Diversity, 44(1), 39-69. https://doi.org/10.1016/j.pld.2021.07.005

Haider, F. U., Coulter, J. A., Cai, L., Hussain, S., Cheema, S. A., Wu, J., & Zhang, R. (2022). An overview on biochar production, its implications, and mechanisms of biochar-induced amelioration of soil and plant characteristics. Pedosphere, 32(1), 107-130. https://doi.org/10.1016/S1002-0160(20)60094-7

Hasan, N. (2018). Efficacy of Vermicompost and Biochar on the Growth and Yield of Green Cabbage [Master Thesis, Department of Horticulture, Sher-E-Bangla Agricultural University]. http://archive.saulibrary.edu.bd:8080/xmlui/handle/123456789/3020

Hikosaka, K. (2016). Optimality of nitrogen distribution among leaves in plant canopies. Journal of plant research, 129(3), 299-311. https://doi.org/10.1007/s10265-016-0824-1

Hou, Z., Tang, Y., Li, C., Lim, K.-J., & Wang, Z. (2020). The additive effect of biochar amendment and simulated nitrogen deposition stimulates the plant height, photosynthesis and accumulation of NPK in pecan (Carya illinoinensis) seedlings. AoB Plants, 12(4). https://doi.org/10.1093/aobpla/plaa035

Jabborova, D., Annapurna, K., Choudhary, R., Bhowmik, S. N., Desouky, S. E., Selim, S., . . . Elkelish, A. (2021). Interactive Impact of Biochar and Arbuscular Mycorrhizal on Root Morphology, Physiological Properties of Fenugreek (Trigonella foenum-graecum L.) and Soil Enzymatic Activities. Agronomy, 11(11), 2341. https://doi.org/10.3390/agronomy11112341

Jabborova, D., Kadirova, D., Narimanov, A., & Wirth, S. (2021). Beneficial effects of biochar application on lettuce (Lactuca sativa L.) growth, root morphological traits and physiological properties. Annals of Phytomedicine, 10(2), 93-100. https://doi.org/10.21276/ap.2021.10.2.13

Jeffery, S., Verheijen, F. G. A., van der Velde, M., & Bastos, A. C. (2011). A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agriculture, ecosystems & environment, 144(1), 175-187. https://doi.org/10.1016/j.agee.2011.08.015

Jones, D. L., Nguyen, C., & Finlay, R. D. (2009). Carbon flow in the rhizosphere: carbon trading at the soil–root interface. Plant and Soil, 321(1), 5-33. https://doi.org/10.1007/s11104-009-9925-0

Khamadi, F., Mesgarbashi, M., Hosaibi, P., Enaiat, N., & Farzaneh, M. (2015). The effect of crop residue and nitrogen fertilizer levels on soil biological properties and nitrogen indices and redistribution of dry matter in wheat (Triticumaestivum). Applied Field Crops Research, 28(4), 149-157. https://doi.org/10.22092/aj.2016.106752

Lamalakshmi Devi, E., Kumar, S., Basanta Singh, T., Sharma, S. K., Beemrote, A., Devi, C. P., . . . Wani, S. H. (2017). Adaptation Strategies and Defence Mechanisms of Plants During Environmental Stress. In M. Ghorbanpour & A. Varma (Eds.), Medicinal plants and environmental challenges (pp. 359-413). Springer International Publishing. https://doi.org/10.1007/978-3-319-68717-9_20

Lebrun, M., Miard, F., Nandillon, R., Hattab-Hambli, N., Léger, J. C., Scippa, G. S., . . . Bourgerie, S. (2020). Influence of Biochar Particle Size and Concentration on Pb and As Availability in Contaminated Mining Soil and Phytoremediation Potential of Poplar Assessed in a Mesocosm Experiment. Water, Air, & Soil Pollution, 232(1), 3. https://doi.org/10.1007/s11270-020-04942-y

Lucas, B. N., Dalla, N., Boeira, C. P., Verruck, S., & Rosa, C. S. d. (2022). Determination of total phenolic compounds in plant extracts via Folin-Ciocalteu’s method adapted to the usage of digital images. Food Science and Technology, 42. https://doi.org/10.1590/fst.35122

Luo, L., Zhang, Y., & Xu, G. (2020). How does nitrogen shape plant architecture? Journal of experimental botany, 71(15), 4415-4427. https://doi.org/10.1093/jxb/eraa187

Mehdizadeh, L., Moghaddam, M., & Lakzian, A. (2019). Alleviating negative effects of salinity stress in summer savory (Satureja hortensis L.) by biochar application. Acta Physiologiae Plantarum, 41(6), 98. https://doi.org/10.1007/s11738-019-2900-3

Mielke, K. C., Laube, A. F. S., Guimarães, T., Brochado, M. G. d. S., Medeiros, B. A. d. P., & Mendes, K. F. (2022). Pyrolysis Temperature and Application Rate of Sugarcane Straw Biochar Influence Sorption and Desorption of Metribuzin and Soil Chemical Properties. Processes, 10(10), 1924. https://doi.org/10.3390/pr10101924

Moore, F., González, M.-E., Khan, N., Curaqueo, G., Sanchez-Monedero, M., Rilling, J., . . . Meier, S. (2018). Copper immobilization by biochar and microbial community abundance in metal-contaminated soils. Science of The Total Environment, 616-617, 960-969. https://doi.org/10.1016/j.scitotenv.2017.10.223

Muktamar, Z., Lifia, L., & Adiprasetyo, T. (2020). Phosphorus availability as affected by the application of organic amendments in Ultisols. Sains Tanah - Journal of Soil Science and Agroclimatology, 17(1), 16-22. https://doi.org/10.20961/stjssa.v17i1.41284

Mumivand, H., Izadi, Z., Amirizadeh, F., Maggi, F., & Morshedloo, M. R. (2023). Biochar amendment improves growth and the essential oil quality and quantity of peppermint (Mentha × piperita L.) grown under waste water and reduces environmental contamination from waste water disposal. Journal of Hazardous Materials, 446, 130674. https://doi.org/10.1016/j.jhazmat.2022.130674

Murtaza, G., Ahmed, Z., Usman, M., Tariq, W., Ullah, Z., Shareef, M., . . . Ditta, A. (2021). Biochar induced modifications in soil properties and its impacts on crop growth and production. Journal of plant nutrition, 44(11), 1677-1691. https://doi.org/10.1080/01904167.2021.1871746

Nasukawa, H., Tajima, R., Pereira, M. C. F., Nakamura, S., Fukuda, M., Naruo, K., . . . Ito, T. (2023). Comparative verification of Mehlich 3 soil analysis methods in Northern Mozambique using microwave plasma–atomic emission spectrometry. Soil Science and Plant Nutrition, 69(5-6), 327-336. https://doi.org/10.1080/00380768.2023.2238217

Nobaharan, K., Abtahi, A., Asgari Lajayer, B., & van Hullebusch, E. D. (2022). Effects of biochar dose on cadmium accumulation in spinach and its fractionation in a calcareous soil. Arabian Journal of Geosciences, 15(4), 336. https://doi.org/10.1007/s12517-022-09608-z

Otori, K., Tanabe, N., Maruyama, T., Sato, S., Yanagisawa, S., Tamoi, M., & Shigeoka, S. (2017). Enhanced photosynthetic capacity increases nitrogen metabolism through the coordinated regulation of carbon and nitrogen assimilation in Arabidopsis thaliana. Journal of plant research, 130(5), 909-927. https://doi.org/10.1007/s10265-017-0950-4

Pan, S.-Y., Dong, C.-D., Su, J.-F., Wang, P.-Y., Chen, C.-W., Chang, J.-S., . . . Hung, C.-M. (2021). The Role of Biochar in Regulating the Carbon, Phosphorus, and Nitrogen Cycles Exemplified by Soil Systems. Sustainability, 13(10), 5612. https://doi.org/10.3390/su13105612

Parkash, V., & Singh, S. (2020). Potential of Biochar Application to Mitigate Salinity Stress in Eggplant. HortScience horts, 55(12), 1946-1955. https://doi.org/10.21273/hortsci15398-20

Peiris, C., Wathudura, P. D., Gunatilake, S. R., Gajanayake, B., Wewalwela, J. J., Abeysundara, S., & Vithanage, M. (2022). Effect of acid modified tea-waste biochar on crop productivity of red onion (Allium cepa L.). Chemosphere, 288, 132551. https://doi.org/10.1016/j.chemosphere.2021.132551

Rahayu, R., Syamsiyah, J., Cahyani, V. R., & Fauziah, S. K. (2019). The Effects of Biochar and Compost on Different Cultivars of Shallots (Allium ascalonicum L.) Growth and Nutrient Uptake in Sandy Soil Under Saline Water. Sains Tanah - Journal of Soil Science and Agroclimatology, 16(2), 213-228. https://doi.org/10.20961/stjssa.v16i2.34209

Rahman, M. A., Jahiruddin, M., Kader, M. A., Islam, M. R., & Solaiman, Z. M. (2022). Sugarcane bagasse biochar increases soil carbon sequestration and yields of maize and groundnut in charland ecosystem. Archives of Agronomy and Soil Science, 68(10), 1338-1351. https://doi.org/10.1080/03650340.2021.1892651

Rassaei, F. (2023). Biochar Effects on Rice Paddy Cadmium Contaminated Calcareous Clay Soil: A Study on Adsorption Kinetics and Cadmium Uptake. Paddy and Water Environment, 21(3), 389-400. https://doi.org/10.1007/s10333-023-00937-7

Rassaei, F. (2024). Rice yield and carbon dioxide emissions in a paddy soil: A comparison of biochar and polystyrene microplastics. Environmental Progress & Sustainable Energy, 43(1), e14217. https://doi.org/https://doi.org/10.1002/ep.14217

Röös, E., Mie, A., Wivstad, M., Salomon, E., Johansson, B., Gunnarsson, S., . . . Watson, C. A. (2018). Risks and opportunities of increasing yields in organic farming. A review. Agronomy for Sustainable Development, 38(2), 14. https://doi.org/10.1007/s13593-018-0489-3

Sachdev, S., Ansari, S. A., Ansari, M. I., Fujita, M., & Hasanuzzaman, M. (2021). Abiotic Stress and Reactive Oxygen Species: Generation, Signaling, and Defense Mechanisms. Antioxidants, 10(2), 277. https://doi.org/10.3390/antiox10020277

Saeed, Q., Xiukang, W., Haider, F. U., Kučerik, J., Mumtaz, M. Z., Holatko, J., . . . Mustafa, A. (2021). Rhizosphere Bacteria in Plant Growth Promotion, Biocontrol, and Bioremediation of Contaminated Sites: A Comprehensive Review of Effects and Mechanisms. International Journal of Molecular Sciences, 22(19), 10529. https://doi.org/10.3390/ijms221910529

Sepehr, M. F., & Moradli, A. (2021). The Study of Chromium and Zinc Contaminated Soil Influence on Iron Content and Protein Profile of Ornamental Cabbage Plant. Biology Bulletin, 48(3), S54-S61. https://doi.org/10.1134/S1062359022010113

Shaaban, A., Hemida, K. A., Abd El-Mageed, T. A., Semida, W. M., AbuQamar, S. F., El-Saadony, M. T., . . . El-Tarabily, K. A. (2024). Incorporation of compost and biochar enhances yield and medicinal compounds in seeds of water-stressed Trigonella foenum-graecum L. plants cultivated in saline calcareous soils. BMC plant biology, 24(1), 538. https://doi.org/10.1186/s12870-024-05182-6

Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT, 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932

Taghavi, T., Patel, H., Akande, O. E., & Galam, D. C. A. (2022). Total Anthocyanin Content of Strawberry and the Profile Changes by Extraction Methods and Sample Processing. Foods, 11(8), 1072. https://doi.org/10.3390/foods11081072

Talebi, E., Haghighat Jahromi, M., Khosravi Nezhad, M., & Rowghani Haghighi Fard, E. (2022). Herbal plants as an appropriate stimulus with prophylactic potential in livestock: A review. Safe Future and Agricultural Research Journal (SFARJ), 1(1), 11-19. https://doi.org/10.22034/sfar.2022.158473

Tuladhar, P., Sasidharan, S., & Saudagar, P. (2021). 17 - Role of phenols and polyphenols in plant defense response to biotic and abiotic stresses. In S. Jogaiah (Ed.), Biocontrol Agents and Secondary Metabolites (pp. 419-441). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-822919-4.00017-X

Vega, A., Delgado, N., & Handford, M. (2022). Increasing Heavy Metal Tolerance by the Exogenous Application of Organic Acids. International Journal of Molecular Sciences, 23(10), 5438. https://doi.org/10.3390/ijms23105438

Wang, L., Xue, C., Nie, X., Liu, Y., & Chen, F. (2018). Effects of biochar application on soil potassium dynamics and crop uptake. Journal of Plant Nutrition and Soil Science, 181(5), 635-643. https://doi.org/10.1002/jpln.201700528

Winarso, S., Mandala, M., Sulistiyowati, H., Romadhona, S., Hermiyanto, B., & Subchan, W. (2020). The decomposition and efficiency of NPK-enriched biochar addition on Ultisols with soybean. Sains Tanah - Journal of Soil Science and Agroclimatology, 17(1), 35-41. https://doi.org/10.20961/stjssa.v17i1.37608

Yahia, E. M., Gardea-Béjar, A., Ornelas-Paz, J. d. J., Maya-Meraz, I. O., Rodríguez-Roque, M. J., Rios-Velasco, C., . . . Salas-Marina, M. A. (2019). Chapter 4 - Preharvest Factors Affecting Postharvest Quality. In E. M. Yahia (Ed.), Postharvest Technology of Perishable Horticultural Commodities (pp. 99-128). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-813276-0.00004-3

Yang, L., Wu, Y., Wang, Y., An, W., Jin, J., Sun, K., & Wang, X. (2021). Effects of biochar addition on the abundance, speciation, availability, and leaching loss of soil phosphorus. Science of The Total Environment, 758, 143657. https://doi.org/10.1016/j.scitotenv.2020.143657

Yousefzadeh, S., Modarres Sanavy, S. A. M., Govahi, M., & Khatamian Oskooie, O. S. (2015). Effect of Organic and Chemical Fertilizer on Soil Characteristics and Essential Oil Yield in Dragonhead. Journal of plant nutrition, 38(12), 1862-1876. https://doi.org/10.1080/01904167.2015.1061548

Zaia, M. G., Cagnazzo, T. d. O., Feitosa, K. A., Soares, E. G., Faccioli, L. H., Allegretti, S. M., . . . Anibal, F. d. F. (2016). Anti-Inflammatory Properties of Menthol and Menthone in Schistosoma mansoni Infection. Frontiers in pharmacology, 7. https://doi.org/10.3389/fphar.2016.00170

Zhu, Y., Qi, B., Hao, Y., Liu, H., Sun, G., Chen, R., & Song, S. (2021). Appropriate NH4+/NO3– Ratio Triggers Plant Growth and Nutrient Uptake of Flowering Chinese Cabbage by Optimizing the pH Value of Nutrient Solution. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.656144

Refbacks

  • There are currently no refbacks.