The concept of bio-economic mulching in droughty tropical agroecosystems and its trans-season effects on soil hydro-thermal regime and okra performance

Benedict Odinaka Okorie, Justina O. Obi, Geraldine U. Chioke, Sunday E. Obalum, Chinaza J. Onah, Adaobi L. Nnadi, Charles A. Igwe, Martin E. Obi

Abstract

Mulching is an effective soil-water conservation technique in high-evaporative-demand tropical climates. Because of the drawbacks in bulk application of organic mulches, we introduce the concept of bio-economic mulching (BEM), a one-time low-rate application of organic mulch to improve soil productivity while sustaining economic viability. The study evaluated the effects of BEM (dry-grass mulching at 0, 2, 4, and 6 t ha–1) on soil hydrothermal properties of sandy-loam Ultisols using okra growth during 4–9 weeks after sowing in successive rainy-to-dry/partially rainfed season (PRS) and rainy/completely rainfed season (CRS). During the PRS, soil volumetric moisture content (q) increased (10.02%–25.50%), but soil temperature decreased (37.67–26.67°C) as BEM rate increased. A similar q trend (8.71%–18.37%) occurred during the CRS. Soil thermal conductivity (0.78to 4.88 W m–1 K–1), thermal diffusivity (3.95 × 10–7 to 35.97 × 10–7 m2 s–1), and heat flux (15.00 to 85.56 W m–2) generally decreased as q increased with BEM application rate particularly during the PRS; the reverse prevailed for volumetric heat capacity (1.33 × 106 to 2.25 × 106 J m–3 K–1). Okra plant height differed (BEM-6 > BEM-4 > BEM-2/BEM-0) in the PRS, but BEM-6 and BEM-4 gave the tallest and shortest plants, respectively in the CRS. Fruit yield was 1.8- and 9.5-fold higher in BEM-6 than BEM-4 in PRS and CRS, respectively. Mulch treatment-induced temporal variations in soil q influenced okra performance indices of plant height (r2 = 0.85) and total fresh fruit yield (r2 = 0.69). In droughty tropical environments, BEM implementation at 6 t ha−1 could engender soil hydrothermal regime favoring vegetable production beyond the ‘drier’ first season and even more pronouncedly in the second season.

Keywords

Coarse-textured tropical soils, soil hydrothermal properties, Organic mulching, Rainy-to-dry season interphase, Soil Water conservation

Full Text:

PDF

References

Abbate, C., Scavo, A., Pesce, G. R., Fontanazza, S., Restuccia, A., & Mauromicale, G. (2023). Soil Bioplastic Mulches for Agroecosystem Sustainability: A Comprehensive Review. Agriculture, 13(1), 197. https://doi.org/10.3390/agriculture13010197

Adekiya, A. O., Agbede, T. M., Aboyeji, C. M., & Dunsin, O. (2017). Response of okra (Abelmoschus esculentus (L.) Moench) and soil properties to different mulch materials in different cropping seasons. Scientia Horticulturae, 217, 209-216. https://doi.org/10.1016/j.scienta.2017.01.053

Adhikari, S., Poudel, P., & Adhikari, A. (2023). The Response of Okra (Abelmoschus esculentus L. Var Arka Namika) to Different Mulching Techniques Under the Organic Condition at Udayapur, Nepal. Acta Scientific AGRICULTURE (ISSN: 2581-365X), 7(1). https://doi.org/10.31080/ASAG.2022.07.1224

Al-Shammary, A. A. G., & Al-Sadoon, J. N. A. (2014). Influence of tillage depth, soil mulching systems and fertilizers on some thermal properties of silty clay soil. European Journal of Agriculture and Forestry Research, 2(2), 1-16. https://eajournals.org/ejafr/vol-2issue2june-2014/influence-tillage-depth-soil-mulching-systems-fertilizers-thermal-properties-silty-clay-soil/

Alnefaie, K. A., & Abu-Hamdeh, N. H. (2020). Specific heat and volumetric heat capacity of some Saudi soils as affected by moisture and density. International Journal of Materials, 7, 42-46. https://doi.org/10.46300/91018.2020.7.8

Amin, M. H. A., Akter, M. M., Biswas, A. K., Parvej, M. M. R., & Rayhan, S. M. (2021). Bio-economic production potentiality of Solanum lycopersicum under smart agroforestry practice. Innovations in Agriculture, 4, 1-9. https://doi.org/10.25081/ia.2021.v4.6990

Aniekwe, N. L. (2015). Comparative Effects of Organic and Plastic Mulches on the Environment , Growth and Yield of Okra in A Derived Savanna Zone of Nigeria. International Journal of Science and Research, 4(1), 1860-1864. https://www.ijsr.net/archive/v4i1/SUB15614.pdf

Atugwu, A. I., Imoh, O. N., Nnadi, A. L., Chukwudi, U. P., Obalum, S. E., Onyia, V. N., & Kato, K. (2023). Comparative Assessment of Adaptability and Agronomic Traits of Seventeen Tomato Varieties on Coarse-Textured Soil in Tropical Dry and Rainy Seasons. Agriculturae Conspectus Scientificus, 88(3), 177-186. https://hrcak.srce.hr/308160

Bandopadhyay, S., English, M., Anunciado, M. B., Starrett, M., Hu, J., Liquet y González, J. E., . . . DeBruyn, J. M. (2023). Organic and inorganic nitrogen amendments reduce biodegradation of biodegradable plastic mulch films. SOIL, 9(2), 499-516. https://doi.org/10.5194/soil-9-499-2023

Bhutia, T., Singh, S., & Reddy, K. (2017). Effect of mulching and nitrogen on growth, yield and economics of okra (Abelmoschus esculentus). Ecology Environment and Conservation, 23(2), 826-832. https://www.researchgate.net/publication/319235872_Effect_of_mulching_and_nitrogen_on_growth_yield_and_economics_of_Okra_Abelmoschus_esculentus

Critchley, W., Harari, N., Mollee, E., Mekdaschi-Studer, R., & Eichenberger, J. (2023). Sustainable Land Management and Climate Change Adaptation for Small-Scale Land Users in Sub-Saharan Africa. Land, 12(6), 1206. https://doi.org/10.3390/land12061206

Das, A., Mathur, A. K., Singh, S., Ghemeray, H., & Boopalakrishnan, G. (2020). Climate Change – A Real Threats to Okra Production. In A. Badoni (Ed.), Climate Change and Sustainable Agriculture (pp. 51-59). S. F. Publication. https://www.researchgate.net/publication/343557737

Ekwue, E., Stone, R., Peters, E., & Rampersad, S. (2015). Thermal conductivities of some agricultural soils in Trinidad as affected by density, water and peat content. West Indian Journal of Engineering, 38(1), 61-69. https://journals.sta.uwi.edu/ojs/index.php/wije/article/view/7696/6786

Evett, S. R., Agam, N., Kustas, W. P., Colaizzi, P. D., & Schwartz, R. C. (2012). Soil profile method for soil thermal diffusivity, conductivity and heat flux: Comparison to soil heat flux plates. Advances in Water Resources, 50, 41-54. https://doi.org/10.1016/j.advwatres.2012.04.012

Ezenne, G. I., Obalum, S. E., & Tanner, J. (2019). Physical-hydraulic properties of tropical sandy-loam soil in response to rice-husk dust and cattle dung amendments and surface mulching. Hydrological Sciences Journal, 64(14), 1746-1754. https://doi.org/10.1080/02626667.2019.1662909

Fan, D., Jia, G., Wang, Y., & Yu, X. (2023). The effectiveness of mulching practices on water erosion control: A global meta-analysis. Geoderma, 438, 116643. https://doi.org/10.1016/j.geoderma.2023.116643

Ghuman, B. S., & Lal, R. (1985). Thermal Conductivity, Thermal Diffusivity, and Thermal Capacity of Some Nigerian Soils. Soil Science, 139(1), 74-80. https://journals.lww.com/soilsci/fulltext/1985/01000/thermal_conductivity,_thermal_diffusivity,_and.11.aspx

Gwani, M., Abubakar, G., & Utah, E. (2013). Determination of soil thermal conductivity using solar energy and soil temperature in Sokoto. International Journal of Environmental Sciences, 3(5), 1330-1338. https://www.indianjournals.com/ijor.aspx?target=ijor:ijes&volume=3&issue=5&article=003

He, R., Jia, N., Jin, H., Wang, H., & Li, X. (2021). Experimental Study on Thermal Conductivity of Organic-Rich Soils under Thawed and Frozen States. Geofluids, 2021(1), 7566669. https://doi.org/https://doi.org/10.1155/2021/7566669

Igwe, C. A., & Obalum, S. E. (2013). Microaggregate Stability of Tropical Soils and its Roles on Soil Erosion Hazard Prediction. In G. Stanislaw & S. Andrzej (Eds.), Advances in Agrophysical Research (pp. Ch. 8). IntechOpen. https://doi.org/10.5772/52473

Igwe, C. A., & Obalum, S. E. (2023). Sustainable Agriculture in Fragile Ecosystems. In P. C. Nnabude, A. O. Onunwa, P. N. Okpata, & I. Uko (Eds.), Soil: The Indispensable Link. Cadventures Press. https://www.researchgate.net/publication/376477692_Sustainable_Agriculture_in_Fragile_Ecosystems

IUSS Working Group WRB. (2022). World Reference Base for Soil Resources. International soil classification system for naming soils and creating legends for soil maps (4th ed.). International Union of Soil Sciences (IUSS), Vienna, Austria. https://www.isric.org/sites/default/files/WRB_fourth_edition_2022-12-18.pdf

Jabran, K., Ullah, E., Hussain, M., Farooq, M., Zaman, U., Yaseen, M., & Chauhan, B. S. (2015). Mulching Improves Water Productivity, Yield and Quality of Fine Rice under Water-saving Rice Production Systems. Journal of Agronomy and Crop Science, 201(5), 389-400. https://doi.org/10.1111/jac.12099

Kader, M. A. (2020). Effectiveness of various types of mulching on soil moisture and temperature regimes under rainfed soybean cultivation [Doctoral dissertation, Kyoto University]. http://hdl.handle.net/2433/259050

Kodzwa, J. J., Gotosa, J., & Nyamangara, J. (2020). Mulching is the most important of the three conservation agriculture principles in increasing crop yield in the short term, under sub humid tropical conditions in Zimbabwe. Soil and Tillage Research, 197, 104515. https://doi.org/10.1016/j.still.2019.104515

Li, R., Li, Q., & Pan, L. (2021). Review of organic mulching effects on soil and water loss. Archives of Agronomy and Soil Science, 67(1), 136-151. https://doi.org/10.1080/03650340.2020.1718111

Li, R., Li, Q., Zhang, J., Liu, Z., Pan, L., Huang, K., & Zhang, L. (2020). Effects of Organic Mulch on Soil Moisture and Nutrients in Karst Area of Southwest China [journal article]. Polish Journal of Environmental Studies, 29(6), 4161-4174. https://doi.org/10.15244/pjoes/119477

Malek, K., Malek, K., & Khanmohammadi, F. (2021). Response of soil thermal conductivity to various soil properties. International Communications in Heat and Mass Transfer, 127, 105516. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2021.105516

Ngangom, B., Das, A., Lal, R., Idapuganti, R. G., Layek, J., Basavaraj, S., . . . Ghosh, P. K. (2020). Double mulching improves soil properties and productivity of maize-based cropping system in eastern Indian Himalayas. International Soil and Water Conservation Research, 8(3), 308-320. https://doi.org/https://doi.org/10.1016/j.iswcr.2020.07.001

Novák, V., & Hlaváčiková, H. (2019). Soil Temperature and Heat Transport in Soils. In Applied Soil Hydrology (pp. 303-318). Springer International Publishing. https://doi.org/10.1007/978-3-030-01806-1_20

Nwaokoro, E., & Nymphas, E. (2020). Temperature variations and soil thermal properties at the Nigeria mesoscale experiment site, Ibadan, Nigeria. International Research Journal of Pure and Applied Physics, 7(1), 7-14. https://eajournals.org/wp-content/uploads/Temperature-Variations-and-Soil-Thermal-Properties-at-the.pdf

Nyajeka, M., Svotwa, E., & Katsaruware, D. (2017). Effects of grass (Hyperenia spp.) mulching rate on development and yield of okra (Abelmoschus esculentus) under drip irrigation. African Journal of Agricultural Research, 12(37), 2817-2823. https://doi.org/10.5897/AJAR2017.12225

Obalum, S. E., Edeh, I. G., Imoh, O. N., Njoku, O. M., Uzoh, I. M., Onyia, V. N., . . . Reichert, J. M. (2017). Agronomic evaluation of seedbed and mulching alternatives with plant spacing for dry-season fluted pumpkin in coarse-textured tropical soil. Food and Energy Security, 6(3), 113-122. https://doi.org/https://doi.org/10.1002/fes3.111

Obalum, S. E., Igwe, C. A., & Obi, M. E. (2012). Soil moisture dynamics under rainfed sorghum and soybean on contrasting tillage–mulch seedbeds in a mineral sandy loam at derived savanna of south-eastern Nigeria. Archives of Agronomy and Soil Science, 58(11), 1205-1227. https://doi.org/10.1080/03650340.2011.575065

Obalum, S. E., & Obi, M. E. (2010). Physical properties of a sandy loam Ultisol as affected by tillage-mulch management practices and cropping systems. Soil and Tillage Research, 108(1), 30-36. https://doi.org/10.1016/j.still.2010.03.009

Obalum, S. E., & Obi, M. E. (2014). Measured versus estimated total porosity along structure-stability gradients of coarse-textured tropical soils with low-activity clay. Environmental Earth Sciences, 72(6), 1953-1963. https://doi.org/10.1007/s12665-014-3102-3

Obi, J. O., Onah, C. J., Nnadi, A. L., Osadebe, V. O., Akubue, J. C., Amuji, C. F., & Obalum, S. E. (2024). Sensitivity of rainfed okra (Abelmoschus esculentus L. Moench) to mulch material and plant spacing in drought-prone tropical soils. Agroindustrial Science, 14(2), 97-106. https://revistas.unitru.edu.pe/index.php/agroindscience/article/view/5997

Oladunjoye, M., Sanuade, O., & Olaojo, A. (2013). Variability of soil thermal properties of a seasonally cultivated agricultural teaching and research farm, university of Ibadan, south-western Nigeria. Global Journal of Science Frontier Research Agriculture and Veterinary, 13(8), 41-64. https://globaljournals.org/GJSFR_Volume13/6-Variability-of-Soil-Thermal-Properties.pdf

Onah, C., Nnadi, A., Eyibio, N., Obi, J., Orah, A., Amuji, C., & Obalum, S. (2023). Off-season heavy application of poultry manure to droughty-acid soils under heavily protective organic mulch later burnt to ash improves their productivity. West African Journal of Applied Ecology, 31(1), 23-36. https://www.ajol.info/index.php/wajae/article/view/249098/235556

Onwuka, B. M., Oguike, P. C., & Adesemuyi, E. A. (2021). Variations in soil heat transfer under different land use types in Abia State, South eastern Nigeria. Eurasian Journal of Soil Science, 10(1), 1-8. https://doi.org/10.18393/ejss.797843

Osakwe, U. C., Nnadi, A. L., Ede, L. C., Obi, J. O., Okolo, C. C., & Obalum, S. E. (2023). urface mulching effects on soil temperature of jumbo-size potted coarse-textured Ultisols and evaluation on sorghum and soybean growth. Agro-Science, 22(4), 82-90. https://doi.org/10.4314/as.v22i4.12

Parker, B., Logah, V., Opoku, A., & Quansah, C. (2023). One-time conventional tillage, crop diversification and mulching enhanced hydro-physical properties of a tropical sandy loam soil. Agro-Science, 22(2), 43-55. https://doi.org/10.4314/as.v22i2.7

Qin, W., Hu, C., & Oenema, O. (2015). Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Scientific Reports, 5(1), 16210. https://doi.org/10.1038/srep16210

Rahma, A. E., Wang, W., Tang, Z., Lei, T., Warrington, D. N., & Zhao, J. (2017). Straw mulch can induce greater soil losses from loess slopes than no mulch under extreme rainfall conditions. Agricultural and Forest Meteorology, 232, 141-151. https://doi.org/https://doi.org/10.1016/j.agrformet.2016.07.015

Selolo, K. R., Mzezewa, J., & Odhiambo, J. J. (2023). Short-term effects of tillage and leaf mulch on soil properties and sunflower yield under semi-arid conditions [journal article]. Plant, Soil and Environment, 69(2), 55-61. https://doi.org/10.17221/160/2022-PSE

Sharma, P. K., & Kumar, S. (2023). Soil Temperature and Plant Growth. In Soil Physical Environment and Plant Growth: Evaluation and Management (pp. 175-204). Springer International Publishing. https://doi.org/10.1007/978-3-031-28057-3_7

Smith, P., Polomski, R. F., & Shaughnessy, D. (2020). Okra Factsheet. Home and Garden Information Center (HGIC), Clemson and Cooperative Centre. Retrieved 30th of October 2021 from https://hgic.clemson.edu/factsheet/okra/

Soil Survey Staff. (2022). Keys to Soil Taxonomy (13th ed.). USDA-Natural Resources Conservation Service, Washington DC.

Wang, C., Fu, B., Zhang, L., & Xu, Z. (2019). Soil moisture–plant interactions: an ecohydrological review. Journal of Soils and Sediments, 19(1), 1-9. https://doi.org/10.1007/s11368-018-2167-0

Yasmina, M., Rahmanb, M., Shikhac, F., Rahmand, M., Rahmane, J., & Tipuf, M. (2020). Effect of mulch on soil temperature, soil moisture conservation and yield of chilli. Journal Clean WAS (JCleanWAS), 4(1), 36-39. https://doi.org/10.26480/jcleanwas.01.2020.36.39

Refbacks

  • There are currently no refbacks.