Functional diversity of bacteria in various saline soil plant vegetations around Sialang Buah Coast, North Sumatra, Indonesia

Mariani Sembiring, Juli M. Hutahuruk, Dwi Ningsih Susilowati, Erny Yuniarti, T. Sabrina, Luthfi A. Mahmud Siregar

Abstract

Environmental conditions profoundly influence microbial diversity and activity in soil. For optimal growth, soil microbes face limiting factors such as temperature, moisture, pH, and salinity levels. This study aims to find types of functional bacteria that are able to live in saline soils. The study was conducted in the Soil Biology Laboratory at Universitas Sumatera Utara (USU), Indonesia. Soil samples were collected around the Sialang Buah Coast, Serdang Bedagai Regency, North Sumatra, Indonesia. The method employed in this research was random composite sampling taken from three vegetation types: mangrove forests, grasslands, and oil palm plantations, with sample collection locations influenced by tidal fluctuations. Ten sampling points were taken at each location and then composited for each vegetation type. The results of the study showed that there were ten species of bacteria that were able to live in saline soil, namely Pseudomonas aeruginosa, Burkholderia gladioli, Enterobacter cloacae, Brucella ciceri, Ochrobactrum oryzae, Achromobacter xylosoxidans, Priestia flexa, Enterobacter quasiroggenkampii, Bacillus cereus and Ochrobactrum oryzae. All bacteria found were able to grow on Pikovskaya, Alexandrov, and Jensen media and only seven species of bacteria were able to form biofilms, namely P. aeruginosa, B. gladioli, E. cloacae, B. ciceri, A. xylosoxidans, P. flexa, and E. quasiroggenkampii

Keywords

Biofilm; Microbial diversity; Nutrient availability; Salinity; Vegetation types

Full Text:

PDF

References

Abrol, I. P., Yadav, J. S. P., & Massoud, F. I. (1988). Salt-affected soils and their management (Vol. 39). Food & Agriculture Organization (FAO). https://www.fao.org/4/x5871e/x5871e00.htm

Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant Responses to Salt Stress: Adaptive Mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018.

Ahemad, M., & Kibret, M. (2014). Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science, 26(1), 1-20. https://doi.org/10.1016/j.jksus.2013.05.001.

Ahmed, M. N., Abdelsamad, A., Wassermann, T., Porse, A., Becker, J., Sommer, M. O. A., . . . Ciofu, O. (2020). The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. npj Biofilms and Microbiomes, 6(1), 28. https://doi.org/10.1038/s41522-020-00138-8.

Ali, S., Charles, T. C., & Glick, B. R. (2014). Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiology and Biochemistry, 80, 160-167. https://doi.org/10.1016/j.plaphy.2014.04.003.

Amankwah, S., Abdella, K., & Kassa, T. (2021). Bacterial biofilm destruction: A focused review on the recent use of phage-based strategies with other antibiofilm agents. Nanotechnology, science and applications, 161-177. https://doi.org/10.2147/NSA.S325594.

Barnawal, D., Bharti, N., Pandey, S. S., Pandey, A., Chanotiya, C. S., & Kalra, A. (2017). Plant growth-promoting rhizobacteria enhance wheat salt and drought stress tolerance by altering endogenous phytohormone levels and TaCTR1/TaDREB2 expression. Physiologia Plantarum, 161(4), 502-514. https://doi.org/10.1111/ppl.12614.

Barraud, N., Kelso, M. J., Rice, S. A., & Kjelleberg, S. (2015). Nitric oxide: a key mediator of biofilm dispersal with applications in infectious diseases. Curr Pharm Des, 21(1), 31-42. https://doi.org/10.2174/1381612820666140905112822.

Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences, 110(17), E1621-E1630. https://doi.org/10.1073/pnas.1218984110.

Bharti, N., Barnawal, D., Awasthi, A., Yadav, A., & Kalra, A. (2014). Plant growth promoting rhizobacteria alleviate salinity induced negative effects on growth, oil content and physiological status in Mentha arvensis. Acta Physiologiae Plantarum, 36(1), 45-60. https://doi.org/10.1007/s11738-013-1385-8.

Dworkin, M., & Foster, J. W. (1958). Experiments with some microorganisms which utilize ethane and hydrogen. Journal of Bacteriology, 75(5), 592-603. https://doi.org/10.1128/jb.75.5.592-603.1958.

Egamberdieva, D., Wirth, S. J., Shurigin, V. V., Hashem, A., & Abd Allah, E. F. (2017). Endophytic Bacteria Improve Plant Growth, Symbiotic Performance of Chickpea (Cicer arietinum L.) and Induce Suppression of Root Rot Caused by Fusarium solani under Salt Stress. Front Microbiol, 8, 1887. https://doi.org/10.3389/fmicb.2017.01887.

Ehis-Eriakha, C., Willy-Vidona, C., & Akemu, S. (2022). Isolation and Molecular Characterization of Diazotrophic Bacteria in Arable Soils. International Journal of Innovative Science and Research Technology, 7(4), 1436-1443. https://doi.org/10.5281/zenodo.6596587.

Glick, B. R. (2014). Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiological Research, 169(1), 30-39. https://doi.org/10.1016/j.micres.2013.09.009.

Goodwine, J., Gil, J., Doiron, A., Valdes, J., Solis, M., Higa, A., . . . Sauer, K. (2019). Pyruvate-depleting conditions induce biofilm dispersion and enhance the efficacy of antibiotics in killing biofilms in vitro and in vivo. Scientific Reports, 9(1), 3763. https://doi.org/10.1038/s41598-019-40378-z.

Jensen, H. L. (1951). Notes on the biology of Azotobacter. Proceedings of the Society for Applied Bacteriology, 14(1), 89-94. https://doi.org/https://doi.org/10.1111/j.1365-2672.1951.tb01997.x.

Jiao, Y., Zhu, Y., Zeng, S., Wang, S., Chen, J., Zhou, X., & Ma, G. (2023). Characterization of a novel marine microbial uricase from Priestia flexa and evaluation of the effects of CMCS conjugation on its enzymatic properties. Preparative Biochemistry & Biotechnology, 53(7), 816-826. https://doi.org/10.1080/10826068.2022.2145611.

Kang, S.-M., Khan, A. L., Waqas, M., You, Y.-H., Kim, J.-H., Kim, J.-G., . . . Lee, I.-J. (2014). Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. Journal of Plant Interactions, 9(1), 673-682. https://doi.org/10.1080/17429145.2014.894587.

Kaushal, M. (2020). Insights Into Microbially Induced Salt Tolerance and Endurance Mechanisms (STEM) in Plants [Review]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.01518.

Khan, M. A., Asaf, S., Khan, A. L., Jan, R., Kang, S.-M., Kim, K.-M., & Lee, I.-J. (2019). Rhizobacteria AK1 remediates the toxic effects of salinity stress via regulation of endogenous phytohormones and gene expression in soybean. Biochemical Journal, 476(16), 2393-2409. https://doi.org/10.1042/bcj20190435.

Kim, K., Samaddar, S., Chatterjee, P., Krishnamoorthy, R., Jeon, S., & Sa, T. (2019). Structural and functional responses of microbial community with respect to salinity levels in a coastal reclamation land. Applied Soil Ecology, 137, 96-105. https://doi.org/10.1016/j.apsoil.2019.02.011.

Lade, H., Park, J. H., Chung, S. H., Kim, I. H., Kim, J.-M., Joo, H.-S., & Kim, J.-S. (2019). Biofilm Formation by Staphylococcus aureus Clinical Isolates is Differentially Affected by Glucose and Sodium Chloride Supplemented Culture Media. Journal of Clinical Medicine, 8(11), 1853. https://doi.org/10.3390/jcm8111853.

Liu, F., Xing, S., Ma, H., Du, Z., & Ma, B. (2013). Cytokinin-producing, plant growth-promoting rhizobacteria that confer resistance to drought stress in Platycladus orientalis container seedlings. Applied Microbiology and Biotechnology, 97(20), 9155-9164. https://doi.org/10.1007/s00253-013-5193-2.

Machado, R. M. A., & Serralheiro, R. P. (2017). Soil Salinity: Effect on Vegetable Crop Growth. Management Practices to Prevent and Mitigate Soil Salinization. Horticulturae, 3(2), 30. https://doi.org/10.3390/horticulturae3020030.

Marchesi Julian, R., Sato, T., Weightman Andrew, J., Martin Tracey, A., Fry John, C., Hiom Sarah, J., & Wade William, G. (1998). Design and Evaluation of Useful Bacterium-Specific PCR Primers That Amplify Genes Coding for Bacterial 16S rRNA. Applied and Environmental Microbiology, 64(2), 795-799. https://doi.org/10.1128/AEM.64.2.795-799.1998.

Merritt, J. H., Kadouri, D. E., & O'Toole, G. A. (2006). Growing and Analyzing Static Biofilms. Current Protocols in Microbiology, 00(1), 1B.1.1-1B.1.17. https://doi.org/10.1002/9780471729259.mc01b01s00.

Misra, S., Dixit, V. K., Khan, M. H., Kumar Mishra, S., Dviwedi, G., Yadav, S., . . . Singh Chauhan, P. (2017). Exploitation of agro-climatic environment for selection of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase producing salt tolerant indigenous plant growth promoting rhizobacteria. Microbiological Research, 205, 25-34. https://doi.org/10.1016/j.micres.2017.08.007.

Mohamed, D. J., & Martiny, J. B. H. (2011). Patterns of fungal diversity and composition along a salinity gradient. The ISME Journal, 5(3), 379-388. https://doi.org/10.1038/ismej.2010.137.

Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., . . . Huang, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches [Review]. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00928.

Naher, U. A., Othman, R., & Panhwar, Q. A. (2013). Beneficial effects of mycorrhizal association for crop production in the tropics - a review. International Journal of Agriculture and Biology, 15, 1021-1028. https://www.fspublishers.org/published_papers/625_..pdf.

Naher, U. A., Panhwar, Q. A., Othman, R., Ismail, M. R., & Berahim, Z. (2016). Biofertilizer as a supplement of chemical fertilizer for yield maximization of rice. Journal of Agriculture Food and Development, 2(0), 16-22.

Navarro-Torre, S., Barcia-Piedras, J. M., Mateos-Naranjo, E., Redondo-Gómez, S., Camacho, M., Caviedes, M. A., . . . Rodríguez-Llorente, I. D. (2017). Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biology, 19(2), 249-256. https://doi.org/10.1111/plb.12521.

Olanrewaju, O. S., Glick, B. R., & Babalola, O. O. (2017). Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology and Biotechnology, 33(11), 197. https://doi.org/10.1007/s11274-017-2364-9.

Panhwar, Q. A., Naher, U. A., Radziah, O., Shamshuddin, J., & Razi, I. M. (2014). Bio-Fertilizer, Ground Magnesium Limestone and Basalt Applications May Improve Chemical Properties of Malaysian Acid Sulfate Soils and Rice Growth. Pedosphere, 24(6), 827-835. https://doi.org/10.1016/S1002-0160(14)60070-9.

Paul, D. (2013). Osmotic stress adaptations in rhizobacteria. Journal of Basic Microbiology, 53(2), 101-110. https://doi.org/10.1002/jobm.201100288.

Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species [Internet]. Microbiologya, 17, 362-370.

Ponomareva, A. L., Buzoleva, L. S., & Bogatyrenko, E. A. (2018). Abiotic Environmental Factors Affecting the Formation of Microbial Biofilms. Biology Bulletin, 45(5), 490-496. https://doi.org/10.1134/S106235901805014X.

Prajapati, K., & Modi, H. (2012). Isolation and characterization of potassium solubilizing bacteria from ceramic industry soil. CIBTech Journal of Microbiology, 1(2-3), 8-14. https://www.cibtech.org/J-Microbiology/PUBLICATIONS/2012/Vol-1-No-2-3/02-003...Prajapati...Isolation...Soil.pdf.

Rath, K. M., Fierer, N., Murphy, D. V., & Rousk, J. (2019). Linking bacterial community composition to soil salinity along environmental gradients. The ISME Journal, 13(3), 836-846. https://doi.org/10.1038/s41396-018-0313-8.

Rodríguez-Blanco, A., Sicardi, M., & Frioni, L. (2015). Plant genotype and nitrogen fertilization effects on abundance and diversity of diazotrophic bacteria associated with maize (Zea mays L.). Biology and Fertility of Soils, 51(3), 391-402. https://doi.org/10.1007/s00374-014-0986-8.

Rumbaugh, K. P., & Sauer, K. (2020). Biofilm dispersion. Nature Reviews Microbiology, 18(10), 571-586. https://doi.org/10.1038/s41579-020-0385-0.

Sembiring, M., & Sabrina, T. (2022a). Diversity of phosphate solubilizing bacteria and fungi from andisol soil affected by the eruption of Mount Sinabung, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 23(2). https://doi.org/10.13057/biodiv/d230216.

Sembiring, M., & Sabrina, T. (2022b). Diversity of potassium solving microbes on andisol soil affected by the eruption of Mount Sinabung, North Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity, 23(4). https://doi.org/10.13057/biodiv/d230406.

Seshachala, U., & Tallapragada, P. (2012). Phosphate Solubilizers from the Rhizosphere of Piper nigrum L. in Karnataka, India. Chilean journal of agricultural research, 72, 397-403. https://doi.org/10.4067/S0718-58392012000300014

Setia, R., Gottschalk, P., Smith, P., Marschner, P., Baldock, J., Setia, D., & Smith, J. (2013). Soil salinity decreases global soil organic carbon stocks. Science of The Total Environment, 465, 267-272. https://doi.org/10.1016/j.scitotenv.2012.08.028.

Setia, R., Marschner, P., Baldock, J., Chittleborough, D., Smith, P., & Smith, J. (2011). Salinity effects on carbon mineralization in soils of varying texture. Soil Biology and Biochemistry, 43(9), 1908-1916. https://doi.org/10.1016/j.soilbio.2011.05.013.

Shahbaz, M., & Ashraf, M. (2013). Improving Salinity Tolerance in Cereals. Critical Reviews in Plant Sciences, 32(4), 237-249. https://doi.org/10.1080/07352689.2013.758544.

Sharma, S., Kulkarni, J., & Jha, B. (2016). Halotolerant Rhizobacteria Promote Growth and Enhance Salinity Tolerance in Peanut. Frontiers in Microbiology, 7. https://doi.org/10.3389/fmicb.2016.01600.

Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus, 2(1), 587. https://doi.org/10.1186/2193-1801-2-587.

Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123-131. https://doi.org/10.1016/j.sjbs.2014.12.001.

Sianturi, J. K., Sembiring, M., & Guchi, H. (2021). Isolation of potassium solubilizing bacteria in Andisol soil affected by the eruption of Sinabung. IOP Conference Series: Earth and Environmental Science, 782(4), 042070. https://doi.org/10.1088/1755-1315/782/4/042070.

Singh, R. P., Shelke, G. M., Kumar, A., & Jha, P. N. (2015). Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front Microbiol, 6, 937. https://doi.org/10.3389/fmicb.2015.00937.

Soni, A., Rokad, S., & Sharma, P. (2013). Screening of efficient halotolerant phosphate solubilizing bacteria and their effect on seed germination under saline conditions. Journal of Scientific and Innovative Research, 2(5), 932-937. http://www.jsirjournal.com/Vol2Issue5013.pdf.

Sorty, A. M., Meena, K. K., Choudhary, K., Bitla, U. M., Minhas, P. S., & Krishnani, K. K. (2016). Effect of Plant Growth Promoting Bacteria Associated with Halophytic Weed (Psoralea corylifolia L) on Germination and Seedling Growth of Wheat Under Saline Conditions. Applied Biochemistry and Biotechnology, 180(5), 872-882. https://doi.org/10.1007/s12010-016-2139-z.

Srinivasan, R., Santhakumari, S., Poonguzhali, P., Geetha, M., Dyavaiah, M., & Xiangmin, L. (2021). Bacterial Biofilm Inhibition: A Focused Review on Recent Therapeutic Strategies for Combating the Biofilm Mediated Infections. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.676458.

Tan, W., Wang, J., Bai, W., Qi, J., & Chen, W. (2020). Soil bacterial diversity correlates with precipitation and soil pH in long-term maize cropping systems. Scientific Reports, 10(1), 6012. https://doi.org/10.1038/s41598-020-62919-7.

Toyofuku, M., Inaba, T., Kiyokawa, T., Obana, N., Yawata, Y., & Nomura, N. (2016). Environmental factors that shape biofilm formation. Bioscience, Biotechnology, and Biochemistry, 80(1), 7-12. https://doi.org/10.1080/09168451.2015.1058701.

Wong, V. N. L., Greene, R. S. B., Dalal, R. C., & Murphy, B. W. (2010). Soil carbon dynamics in saline and sodic soils: a review. Soil Use and Management, 26(1), 2-11. https://doi.org/10.1111/j.1475-2743.2009.00251.x.

Yang, C., & Sun, J. (2020). Soil Salinity Drives the Distribution Patterns and Ecological Functions of Fungi in Saline-Alkali Land in the Yellow River Delta, China. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.594284.

Yin, W., Wang, Y., Liu, L., & He, J. (2019). Biofilms: The Microbial “Protective Clothing” in Extreme Environments. International Journal of Molecular Sciences, 20(14), 3423. https://doi.org/10.3390/ijms20143423.

Zea, L., McLean, R. J. C., Rook, T. A., Angle, G., Carter, D. L., Delegard, A., . . . Velez Justiniano, Y. A. (2020). Potential biofilm control strategies for extended spaceflight missions. Biofilm, 2, 100026. https://doi.org/10.1016/j.bioflm.2020.100026.

Zebua, A. C., Guchi, H., & Sembiring, M. (2020). Isolation of non-symbiotic Nitrogen-fixing bacteria on andisol land affected by Sinabung eruption. IOP Conference Series: Earth and Environmental Science, 454(1), 012167. https://doi.org/10.1088/1755-1315/454/1/012167.

Zhao, K., Penttinen, P., Zhang, X., Ao, X., Liu, M., Yu, X., & Chen, Q. (2014). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. Microbiological Research, 169(1), 76-82. https://doi.org/10.1016/j.micres.2013.07.003.

Zhao, Q., Bai, J., Gao, Y., Zhao, H., Zhang, G., & Cui, B. (2020). Shifts in the soil bacterial community along a salinity gradient in the Yellow River Delta. Land Degradation & Development, 31(16), 2255-2267. https://doi.org/10.1002/ldr.3594.

Zhao, S., Liu, J.-J., Banerjee, S., Zhou, N., Zhao, Z.-Y., Zhang, K., & Tian, C.-Y. (2018). Soil pH is equally important as salinity in shaping bacterial communities in saline soils under halophytic vegetation. Scientific Reports, 8(1), 4550. https://doi.org/10.1038/s41598-018-22788-7.

Zou, M., & Liu, D. (2020). Effects of carbon sources and temperature on the formation and structural characteristics of food-related Staphylococcus epidermidis biofilms. Food Science and Human Wellness, 9(4), 370-376. https://doi.org/10.1016/j.fshw.2020.05.007.

Refbacks

  • There are currently no refbacks.