The reliability of Unmanned Aerial Vehicles (UAVs) equipped with multispectral cameras for estimating chlorophyll content, plant height, canopy area, and fruit total number of Lemons (Citrus limon)

Buyung Al Fanshuri, Cahyo Prayogo, Soemarno Soemarno, Sugeng Prijono, Novi Arfarita

Abstract

Monitoring  lemon production requires appropriate and efficient technology. The use of UAVs can addressed these challenges. The purpose of this study was to determine the best vegetation indices (VIs) for estimating chlorophyll content, plant height (PH), canopy area (CA), and fruit total numberas (FTN). CCM 200 was used as a tool to measure the chlorophyll content index (CCI), the number of fruits was measured by hand-counter, and other variables were recorded in meters. The UAV used was a Phantom 4 with a multispectral camera capable of capturing five different bands. The VIs was obtained via analysis of digital numbers generated by the multispectral camera. Then, the VIs was correlated with the CCI, PH, CA and FTN. VIs tested included the following: the normalized difference vegetation index (NDVI), the normalized difference vegetation index-green (NDVIg), the normalized different index (NDI), green minus red (GMR), simple ratio (SR), the Visible Atmospherically Resistant Index (VARI), normalized difference red edge (NDRE), simple ratio red-edge (SRRE), the simple ratio vegetation index (SRVI), and the Canopy Chlorophyll Content Index (CCCI). The best model for predicting CCI was obtained using the NDVIg (R2=0.8480; RMSE=6.1665 and RRMSE=0.0908). Meanwhile, SR turned out to be the best model for predicting PH (R2=0.8266; RMSE=15.6432 and RRMSE=0.0883), CA (R2=0.6886; RMSE= 0.8826 and RRMSE=0.1907), and FTN (R2=0.6850; RMSE=24.5574 and RRMSE=0.3503). The implication of these results for future activities includes establishing early monitoring and evaluation systems for lemon yield and production. This model was developed and tested in this specific location and under these environmental conditions.

Keywords

Multispectral Unmanned Aerial Vehicle (UAV); Image; Field Measurements; Nondestructive; Vegetation Indices

Full Text:

PDF

References

Almansoori, T., Salman, M., & Aljazeri, M. (2021). Rapid and nondestructive estimations of chlorophyll concentration in date palm (Phoenix dactylifera L.) leaflets using SPAD-502+ and CCM-200 portable chlorophyll meters. Emirates Journal of Food and Agriculture, 33(7), 544-554. https://doi.org/10.9755/ejfa.2021.v33.i7.2723

Ban, S., Liu, W., Tian, M., Wang, Q., Yuan, T., Chang, Q., & Li, L. (2022). Rice Leaf Chlorophyll Content Estimation Using UAV-Based Spectral Images in Different Regions. Agronomy, 12(11), 2832. https://doi.org/10.3390/agronomy12112832

Benincasa, P., Antognelli, S., Brunetti, L., Fabbri, C. A., Natale, A., Sartoretti, V., Modeo, G., Guiducci, M., Tei, F., & Vizzari, M. (2018). Reliability of NDVI Derived By High Resolution Satellite and UAV Compared to In_Field Methods for the Evaluation of Early Crop N Status and Grain Yield in Wheat. Experimental Agriculture, 54(4), 604-622. https://doi.org/10.1017/S0014479717000278

Berger, A., Ettlin, G., Quincke, C., & Rodríguez-Bocca, P. (2019). Predicting the Normalized Difference Vegetation Index (NDVI) by training a crop growth model with historical data. Computers and Electronics in Agriculture, 161, 305-311. https://doi.org/10.1016/j.compag.2018.04.028

Delegido, J., Verrelst, J., Meza, C. M., Rivera, J. P., Alonso, L., & Moreno, J. (2013). A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy, 46, 42-52. https://doi.org/10.1016/j.eja.2012.12.001

Fanshuri, B. A., & Yunimar. (2021). Pemetaan Kesehatan Tanaman Jeruk Dengan Metode Supervised Classification Berdasarkan Hasil Citra Drone. Agropross : National Conference Proceedings of Agriculture, 5, 133-138. https://doi.org/10.25047/agropross.2021.215

Gcayi, S. R., Chirima, G. J., Adelabu, S. A., Adam, E., & Abutaleb, K. (2019). Evaluating the Potential of Narrow-Band Indices to Predict Soybean (Glycine Max L. Merr) Grain Yield in The Free State and Mpumalanga of South Africa. Open Access Journal Of Environmental & Soil Science, 3(1), 265-278. https://lupinepublishers.com/environmental-soil-science-journal/pdf/OAJESS.MS.ID.000153.pdf

Gitelson, A. A. (2011). Remote Sensing Estimation of Crop Biophysical Characteristics at Various Scales. In P. S. Thenkabail & J. G. Lyon (Eds.), Hyperspectral Remote Sensing of Vegetation (pp. 329-358). CRC Press. https://doi.org/10.1201/b11222-21

Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3), 501-508. https://doi.org/10.1016/S0176-1617(96)80285-9

Huang, J., & Han, D. (2014). Meta-analysis of influential factors on crop yield estimation by remote sensing. International Journal of Remote Sensing, 35(6), 2267-2295. https://doi.org/10.1080/01431161.2014.890761

Ke, Z., pan, Y., Xu, X., Nie, C., & Zhou, Z. (2015). Citrus Flavonoids and Human Cancers. Journal of Food and Nutrition Research, 3(5), 341-351. https://doi.org/10.12691/jfnr-3-5-9

Kutyauripo, I., Chivheya, J., Siyawamwaya, R., & Maguma, J. (2021). Food behaviour towards natural functional foods during the COVID-19 pandemic. World Nutrition, 12(3), 44-57. https://doi.org/10.26596/wn.202112344-57

Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., Xiao, C., Lu, C., & Liu, Y. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal, 9(1), 68. https://doi.org/10.1186/s13065-015-0145-9

Marcial-Pablo, M. d. J., Ontiveros-Capurata, R. E., Jiménez-Jiménez, S. I., & Ojeda-Bustamante, W. (2021). Maize Crop Coefficient Estimation Based on Spectral Vegetation Indices and Vegetation Cover Fraction Derived from UAV-Based Multispectral Images. Agronomy, 11(4), 668. https://doi.org/10.3390/agronomy11040668

McCluney, W. R. (2014). Introduction to radiometry and photometry (2nd ed.). Artech House.

Myers, D. N. (2019). Chapter 10 - Innovations in Monitoring With Water-Quality Sensors With Case Studies on Floods, Hurricanes, and Harmful Algal Blooms. In S. Ahuja (Ed.), Separation Science and Technology (Vol. 11, pp. 219-283). Academic Press. https://doi.org/10.1016/B978-0-12-815730-5.00010-7

Parry, C., Blonquist Jr., J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell & Environment, 37(11), 2508-2520. https://doi.org/10.1111/pce.12324

Pereyra, M. S., Davidenco, V., Núñez, S. B., & Argüello, J. A. (2014). Chlorophyll content estimation in oregano leaves using a portable chlorophyll meter: relationship with mesophyll thickness and leaf age. Agronomía & Ambiente, 34(1-2). http://agronomiayambiente.agro.uba.ar/index.php/AyA/article/view/29

Peroni Venancio, L., Chartuni Mantovani, E., do Amaral, C. H., Usher Neale, C. M., Zution Gonçalves, I., Filgueiras, R., & Coelho Eugenio, F. (2020). Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction. Agricultural Water Management, 236, 106155. https://doi.org/10.1016/j.agwat.2020.106155

Samseemoung, G., Soni, P., Jayasuriya, H. P. W., & Salokhe, V. M. (2012). Application of low altitude remote sensing (LARS) platform for monitoring crop growth and weed infestation in a soybean plantation. Precision Agriculture, 13(6), 611-627. https://doi.org/10.1007/s11119-012-9271-8

Senecal, J. J. (2019). Convolutional neural networks for multi-and hyper-spectral image classification Montana State University-Bozeman, College of Engineering]. https://scholarworks.montana.edu/xmlui/handle/1/16201

Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136

Tahir, M. N., Naqvi, S. Z. A., Lan, Y., Zhang, Y., Wang, Y., Afzal, M., Cheema, M. J. M., & Amir, S. (2018). Real time estimation of chlorophyll content based on vegetation indices derived from multispectral UAV in the kinnow orchard. International Journal of Precision Agricultural Aviation, 1(1). https://doi.org/10.33440/j.ijpaa.20180101.0001

Vesali, F., Omid, M., Kaleita, A., & Mobli, H. (2015). Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Computers and Electronics in Agriculture, 116, 211-220. https://doi.org/10.1016/j.compag.2015.06.012

Wang, K., Li, W., Deng, L., Lyu, Q., Zheng, Y., Yi, S., Xie, R., Ma, Y., & He, S. (2018). Rapid detection of chlorophyll content and distribution in citrus orchards based on low-altitude remote sensing and bio-sensors. International Journal of Agricultural and Biological Engineering, 11(2), 164-169. https://doi.org/10.25165/j.ijabe.20181102.3189

Wang, Y., Wang, D., Zhang, G., & Wang, J. (2013). Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Research, 149, 33-39. https://doi.org/10.1016/j.fcr.2013.04.007

Widjaja Putra, B. T., & Soni, P. (2018). Enhanced broadband greenness in assessing Chlorophyll a and b, Carotenoid, and Nitrogen in Robusta coffee plantations using a digital camera. Precision Agriculture, 19(2), 238-256. https://doi.org/10.1007/s11119-017-9513-x

Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 109(2), 448-453. https://doi.org/10.1016/0926-6585(65)90170-6

Yuan, W. (2019). A Multi-Sensor Phenotyping System: Applications on Wheat Height Estimation and Soybean Trait Early Prediction [Thesis, Faculty of The Graduate College at the University of Nebraska]. https://digitalcommons.unl.edu/biosysengdiss/89/

Zaigham Abbas Naqvi, S. M., Awais, M., Khan, F. S., Afzal, U., Naz, N., & Khan, M. I. (2021). Unmanned air vehicle based high resolution imagery for chlorophyll estimation using spectrally modified vegetation indices in vertical hierarchy of citrus grove. Remote Sensing Applications: Society and Environment, 23, 100596. https://doi.org/10.1016/j.rsase.2021.100596

Zhang, X., Zhang, J., Li, L., Zhang, Y., & Yang, G. (2017). Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System. Sensors, 17(3), 447. https://doi.org/10.3390/s17030447

Refbacks

  • There are currently no refbacks.