The reliability of Unmanned Aerial Vehicles (UAVs) equipped with multispectral cameras for estimating chlorophyll content, plant height, canopy area, and fruit total number of Lemons (Citrus limon)
Abstract
Keywords
Full Text:
PDFReferences
Almansoori, T., Salman, M., & Aljazeri, M. (2021). Rapid and nondestructive estimations of chlorophyll concentration in date palm (Phoenix dactylifera L.) leaflets using SPAD-502+ and CCM-200 portable chlorophyll meters. Emirates Journal of Food and Agriculture, 33(7), 544-554. https://doi.org/10.9755/ejfa.2021.v33.i7.2723
Ban, S., Liu, W., Tian, M., Wang, Q., Yuan, T., Chang, Q., & Li, L. (2022). Rice Leaf Chlorophyll Content Estimation Using UAV-Based Spectral Images in Different Regions. Agronomy, 12(11), 2832. https://doi.org/10.3390/agronomy12112832
Benincasa, P., Antognelli, S., Brunetti, L., Fabbri, C. A., Natale, A., Sartoretti, V., Modeo, G., Guiducci, M., Tei, F., & Vizzari, M. (2018). Reliability of NDVI Derived By High Resolution Satellite and UAV Compared to In_Field Methods for the Evaluation of Early Crop N Status and Grain Yield in Wheat. Experimental Agriculture, 54(4), 604-622. https://doi.org/10.1017/S0014479717000278
Berger, A., Ettlin, G., Quincke, C., & Rodríguez-Bocca, P. (2019). Predicting the Normalized Difference Vegetation Index (NDVI) by training a crop growth model with historical data. Computers and Electronics in Agriculture, 161, 305-311. https://doi.org/10.1016/j.compag.2018.04.028
Delegido, J., Verrelst, J., Meza, C. M., Rivera, J. P., Alonso, L., & Moreno, J. (2013). A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. European Journal of Agronomy, 46, 42-52. https://doi.org/10.1016/j.eja.2012.12.001
Fanshuri, B. A., & Yunimar. (2021). Pemetaan Kesehatan Tanaman Jeruk Dengan Metode Supervised Classification Berdasarkan Hasil Citra Drone. Agropross : National Conference Proceedings of Agriculture, 5, 133-138. https://doi.org/10.25047/agropross.2021.215
Gcayi, S. R., Chirima, G. J., Adelabu, S. A., Adam, E., & Abutaleb, K. (2019). Evaluating the Potential of Narrow-Band Indices to Predict Soybean (Glycine Max L. Merr) Grain Yield in The Free State and Mpumalanga of South Africa. Open Access Journal Of Environmental & Soil Science, 3(1), 265-278. https://lupinepublishers.com/environmental-soil-science-journal/pdf/OAJESS.MS.ID.000153.pdf
Gitelson, A. A. (2011). Remote Sensing Estimation of Crop Biophysical Characteristics at Various Scales. In P. S. Thenkabail & J. G. Lyon (Eds.), Hyperspectral Remote Sensing of Vegetation (pp. 329-358). CRC Press. https://doi.org/10.1201/b11222-21
Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of Red Edge Position and Chlorophyll Content by Reflectance Measurements Near 700 nm. Journal of Plant Physiology, 148(3), 501-508. https://doi.org/10.1016/S0176-1617(96)80285-9
Huang, J., & Han, D. (2014). Meta-analysis of influential factors on crop yield estimation by remote sensing. International Journal of Remote Sensing, 35(6), 2267-2295. https://doi.org/10.1080/01431161.2014.890761
Ke, Z., pan, Y., Xu, X., Nie, C., & Zhou, Z. (2015). Citrus Flavonoids and Human Cancers. Journal of Food and Nutrition Research, 3(5), 341-351. https://doi.org/10.12691/jfnr-3-5-9
Kutyauripo, I., Chivheya, J., Siyawamwaya, R., & Maguma, J. (2021). Food behaviour towards natural functional foods during the COVID-19 pandemic. World Nutrition, 12(3), 44-57. https://doi.org/10.26596/wn.202112344-57
Lv, X., Zhao, S., Ning, Z., Zeng, H., Shu, Y., Tao, O., Xiao, C., Lu, C., & Liu, Y. (2015). Citrus fruits as a treasure trove of active natural metabolites that potentially provide benefits for human health. Chemistry Central Journal, 9(1), 68. https://doi.org/10.1186/s13065-015-0145-9
Marcial-Pablo, M. d. J., Ontiveros-Capurata, R. E., Jiménez-Jiménez, S. I., & Ojeda-Bustamante, W. (2021). Maize Crop Coefficient Estimation Based on Spectral Vegetation Indices and Vegetation Cover Fraction Derived from UAV-Based Multispectral Images. Agronomy, 11(4), 668. https://doi.org/10.3390/agronomy11040668
McCluney, W. R. (2014). Introduction to radiometry and photometry (2nd ed.). Artech House.
Myers, D. N. (2019). Chapter 10 - Innovations in Monitoring With Water-Quality Sensors With Case Studies on Floods, Hurricanes, and Harmful Algal Blooms. In S. Ahuja (Ed.), Separation Science and Technology (Vol. 11, pp. 219-283). Academic Press. https://doi.org/10.1016/B978-0-12-815730-5.00010-7
Parry, C., Blonquist Jr., J. M., & Bugbee, B. (2014). In situ measurement of leaf chlorophyll concentration: analysis of the optical/absolute relationship. Plant, Cell & Environment, 37(11), 2508-2520. https://doi.org/10.1111/pce.12324
Pereyra, M. S., Davidenco, V., Núñez, S. B., & Argüello, J. A. (2014). Chlorophyll content estimation in oregano leaves using a portable chlorophyll meter: relationship with mesophyll thickness and leaf age. Agronomía & Ambiente, 34(1-2). http://agronomiayambiente.agro.uba.ar/index.php/AyA/article/view/29
Peroni Venancio, L., Chartuni Mantovani, E., do Amaral, C. H., Usher Neale, C. M., Zution Gonçalves, I., Filgueiras, R., & Coelho Eugenio, F. (2020). Potential of using spectral vegetation indices for corn green biomass estimation based on their relationship with the photosynthetic vegetation sub-pixel fraction. Agricultural Water Management, 236, 106155. https://doi.org/10.1016/j.agwat.2020.106155
Samseemoung, G., Soni, P., Jayasuriya, H. P. W., & Salokhe, V. M. (2012). Application of low altitude remote sensing (LARS) platform for monitoring crop growth and weed infestation in a soybean plantation. Precision Agriculture, 13(6), 611-627. https://doi.org/10.1007/s11119-012-9271-8
Senecal, J. J. (2019). Convolutional neural networks for multi-and hyper-spectral image classification Montana State University-Bozeman, College of Engineering]. https://scholarworks.montana.edu/xmlui/handle/1/16201
Sishodia, R. P., Ray, R. L., & Singh, S. K. (2020). Applications of Remote Sensing in Precision Agriculture: A Review. Remote Sensing, 12(19), 3136. https://doi.org/10.3390/rs12193136
Tahir, M. N., Naqvi, S. Z. A., Lan, Y., Zhang, Y., Wang, Y., Afzal, M., Cheema, M. J. M., & Amir, S. (2018). Real time estimation of chlorophyll content based on vegetation indices derived from multispectral UAV in the kinnow orchard. International Journal of Precision Agricultural Aviation, 1(1). https://doi.org/10.33440/j.ijpaa.20180101.0001
Vesali, F., Omid, M., Kaleita, A., & Mobli, H. (2015). Development of an android app to estimate chlorophyll content of corn leaves based on contact imaging. Computers and Electronics in Agriculture, 116, 211-220. https://doi.org/10.1016/j.compag.2015.06.012
Wang, K., Li, W., Deng, L., Lyu, Q., Zheng, Y., Yi, S., Xie, R., Ma, Y., & He, S. (2018). Rapid detection of chlorophyll content and distribution in citrus orchards based on low-altitude remote sensing and bio-sensors. International Journal of Agricultural and Biological Engineering, 11(2), 164-169. https://doi.org/10.25165/j.ijabe.20181102.3189
Wang, Y., Wang, D., Zhang, G., & Wang, J. (2013). Estimating nitrogen status of rice using the image segmentation of G-R thresholding method. Field Crops Research, 149, 33-39. https://doi.org/10.1016/j.fcr.2013.04.007
Widjaja Putra, B. T., & Soni, P. (2018). Enhanced broadband greenness in assessing Chlorophyll a and b, Carotenoid, and Nitrogen in Robusta coffee plantations using a digital camera. Precision Agriculture, 19(2), 238-256. https://doi.org/10.1007/s11119-017-9513-x
Wintermans, J. F. G. M., & De Mots, A. (1965). Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochimica et Biophysica Acta (BBA) - Biophysics including Photosynthesis, 109(2), 448-453. https://doi.org/10.1016/0926-6585(65)90170-6
Yuan, W. (2019). A Multi-Sensor Phenotyping System: Applications on Wheat Height Estimation and Soybean Trait Early Prediction [Thesis, Faculty of The Graduate College at the University of Nebraska]. https://digitalcommons.unl.edu/biosysengdiss/89/
Zaigham Abbas Naqvi, S. M., Awais, M., Khan, F. S., Afzal, U., Naz, N., & Khan, M. I. (2021). Unmanned air vehicle based high resolution imagery for chlorophyll estimation using spectrally modified vegetation indices in vertical hierarchy of citrus grove. Remote Sensing Applications: Society and Environment, 23, 100596. https://doi.org/10.1016/j.rsase.2021.100596
Zhang, X., Zhang, J., Li, L., Zhang, Y., & Yang, G. (2017). Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System. Sensors, 17(3), 447. https://doi.org/10.3390/s17030447
Refbacks
- There are currently no refbacks.