Characteristics and utilization of black soils in Indonesia

Yiyi Sulaeman, Sukarman Sukarman, Risma Neswati, Nurdin Nurdin, Tony Basuki

Abstract

Black soils store a high amount of soil organic carbon (SOC) and play a crucial role in climate change, food security, and land degradation neutrality. However, data and information regarding black soils in tropical regions, including Indonesia, are limited. This study aimed to characterize and identify the utilization of black soils in Indonesia based on legacy soil survey data.  We collated 142 soil pedon samples of Mollisols from articles, technical reports, and existing datasets. The site information (site position, elevation, land use type, parent material) and selected physicochemical properties were stored in a spreadsheet, from which exploratory data analysis was conducted.  The result showed that the median SOC content was 1.53%, ranging from 0.6 to 8.2 %; cation exchange capacity was 30 cmol kg-1, ranging from 9 to 95 cmol kg-1; base saturation was 87%, ranging from 11 to 100 %; and bulk density was 1.21 g cm-3, ranging from 1.13 to 1.36 g cm-3. Other soil characteristics (particle size distribution, exchangeable bases, pH, pore, and water retention) varied with horizon type and land use/land cover. The black soils have been used for paddy fields, dryland farming, and gardens with low management intensity. Main cultivated crops include rice (Oryza sativa), corn (Zea mays), cassava (Manihot esculenta), sweet potato (Ipomoea batatas), and nutmeg (Myristica fragrans), clove (Syzygium aromaticum), coconut (Cocos nucifera), and cocoa (Theobroma cocoa).  Threats to black soil functions include soil erosion, carbon loss, and nutrient imbalance. Soil and water conservation measures, integrated soil nutrient management, and agroforestry are among the best land management practices for black soils.

Keywords

Black soils; Land use; Mollisols; Soil organic carbon; Soil characteristics

Full Text:

PDF

References

Bateni, C., Ventura, M., Tonon, G., & Pisanelli, A. (2021). Soil carbon stock in olive groves agroforestry systems under different management and soil characteristics. Agroforestry Systems, 95(5), 951-961. https://doi.org/10.1007/s10457-019-00367-7

Bell, S. M., Barriocanal, C., Terrer, C., & Rosell-Melé, A. (2020). Management opportunities for soil carbon sequestration following agricultural land abandonment. Environmental Science & Policy, 108, 104-111. https://doi.org/10.1016/j.envsci.2020.03.018

Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R. J., von Unger, M., Emmer, I. M., & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391-398. https://doi.org/10.1038/s41893-020-0491-z

Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land Degradation by Soil Erosion in Nepal: A Review. Soil Systems, 3(1), 12. https://doi.org/10.3390/soilsystems3010012

FAO. (2019). DEFINITION | What is a black soil? Retrieved 08 June 2023 from https://www.fao.org/global-soil-partnership/intergovernmental-technical-panel-soils/gsoc17-implementation/internationalnetworkblacksoils/more-on-black-soils/definition-what-is-a-black-soil/en/

FAO. (2022). Global status of black soils. Rome. https://doi.org/10.4060/cc3124en

Franzel, S., Kiptot, E., & Lukuyu, B. (2014). Agroforestry: Fodder Trees. In N. K. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 235-243). Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00023-1

Han, X., & Li, N. (2018). Research Progress of Black Soil in Northeast China. SCIENTIA GEOGRAPHICA SINICA, 38(7), 1032-1041. https://doi.org/10.13249/j.cnki.sgs.2018.07.004

Hao, X., Han, X., Wang, S., & Li, L.-J. (2022). Dynamics and composition of soil organic carbon in response to 15 years of straw return in a Mollisol. Soil and Tillage Research, 215, 105221. https://doi.org/10.1016/j.still.2021.105221

IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://www.ipcc.ch/report/sixth-assessment-report-working-group-i/

Liu, X., Burras, C. L., Kravchenko, Y. S., Duran, A., Huffman, T., Morras, H., Studdert, G., Zhang, X., Cruse, R. M., & Yuan, X. (2012). Overview of Mollisols in the world: Distribution, land use and management. Canadian Journal of Soil Science, 92(3), 383-402. https://doi.org/10.4141/cjss2010-058

Mikhaylov, A., Moiseev, N., Aleshin, K., & Burkhardt, T. (2020). Global climate change and greenhouse effect. Entrepreneurship and Sustainability Issues, 7(4), 2897. https://jssidoi.org/jesi/article/560

Montanarella, L., Pennock, D. J., McKenzie, N., Badraoui, M., Chude, V., Baptista, I., Mamo, T., Yemefack, M., Singh Aulakh, M., Yagi, K., Young Hong, S., Vijarnsorn, P., Zhang, G. L., Arrouays, D., Black, H., Krasilnikov, P., Sobocká, J., Alegre, J., Henriquez, C. R., de Lourdes Mendonça-Santos, M., Taboada, M., Espinosa-Victoria, D., AlShankiti, A., AlaviPanah, S. K., Elsheikh, E. A. E. M., Hempel, J., Camps Arbestain, M., Nachtergaele, F., & Vargas, R. (2016). World's soils are under threat. SOIL, 2(1), 79-82. https://doi.org/10.5194/soil-2-79-2016

Ontl, T. A., & Schulte, L. A. (2012). Soil carbon storage. Nature Education Knowledge, 3(10), 35. https://www.nature.com/scitable/knowledge/library/soil-carbon-storage-84223790/

Pinheiro Junior, C. R., Tavares, T. R., Oliveira, F. S. d., Santos, O. A. Q. d., Demattê, J. A. M., García, A. C., Anjos, L. H. C. d., & Pereira, M. G. (2022). Black soils in the Araripe basin, Northeast Brazil: Organic and inorganic carbon accumulation in a Chernozem-Kastanozem-Phaeozem sequence. Journal of South American Earth Sciences, 116, 103789. https://doi.org/10.1016/j.jsames.2022.103789

R Development Core Team. (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Sileshi, G. W., Mafongoya, P. L., Akinnifesi, F. K., Phiri, E., Chirwa, P., Beedy, T., Makumba, W., Nyamadzawo, G., Njoloma, J., Wuta, M., Nyamugafata, P., & Jiri, O. (2014). Agroforestry: Fertilizer Trees. In N. K. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 222-234). Academic Press. https://doi.org/10.1016/B978-0-444-52512-3.00022-X

Soil Survey Staff. (2022). Keys to Soil Taxonomy (13th ed.). Natural Resources Conservation Service-USDA. https://www.nrcs.usda.gov/sites/default/files/2022-09/Keys-to-Soil-Taxonomy.pdf

Song, C., Lu, W., & Du, H. (2022). Degradation of Black Soil Quality and Strategies of Prevention Control in Northeast Plain, China. https://www.scitepress.org/Papers/2021/110203/110203.pdf

Sorokin, A., Owens, P., Láng, V., Jiang, Z.-D., Michéli, E., & Krasilnikov, P. (2021). “Black soils” in the Russian Soil Classification system, the US Soil Taxonomy and the WRB: Quantitative correlation and implications for pedodiversity assessment. CATENA, 196, 104824. https://doi.org/10.1016/j.catena.2020.104824

Sulaeman, Y., Cahyana, D., Husnain, & Nursyamsi, D. (2021). Spatial Identification of Black Soils in Indonesia. IOP Conference Series: Earth and Environmental Science, 757(1), 012035. https://doi.org/10.1088/1755-1315/757/1/012035

Sulaeman, Y., Sutandi, A., Barus, B., & Rachiem, D. A. (2012). Pengembangan Model Tanah-Lanskap untuk Menaksir Sifat Tanah di Pulau Jawa. Jurnal Tanah dan Iklim, 35, 1-18.

Wang, F., Harindintwali, J. D., Yuan, Z., Wang, M., Wang, F., Li, S., Yin, Z., Huang, L., Fu, Y., Li, L., Chang, S. X., Zhang, L., Rinklebe, J., Yuan, Z., Zhu, Q., Xiang, L., Tsang, D. C. W., Xu, L., Jiang, X., Liu, J., Wei, N., Kästner, M., Zou, Y., Ok, Y. S., Shen, J., Peng, D., Zhang, W., Barceló, D., Zhou, Y., Bai, Z., Li, B., Zhang, B., Wei, K., Cao, H., Tan, Z., Zhao, L.-b., He, X., Zheng, J., Bolan, N., Liu, X., Huang, C., Dietmann, S., Luo, M., Sun, N., Gong, J., Gong, Y., Brahushi, F., Zhang, T., Xiao, C., Li, X., Chen, W., Jiao, N., Lehmann, J., Zhu, Y.-G., Jin, H., Schäffer, A., Tiedje, J. M., & Chen, J. M. (2021). Technologies and perspectives for achieving carbon neutrality. The Innovation, 2(4), 100180. https://doi.org/10.1016/j.xinn.2021.100180

Refbacks

  • There are currently no refbacks.