Effect of water deficit of Ultisols, Entisols, Spodosols, and Histosols on oil palm productivity in Central Kalimantan

Sukarman Sukarman, Akhmad R. Saidy, Gusti Rusmayadi, Dewi Erika Adriani, Septa Primananda, Suwardi Suwardi, Herry Wirianata, Cindy Diah Ayu Fitriana


The same rainfall can cause different degrees of water stress depending on soil type, so the production response shown by plants can be different. This study is essential for growers, especially in predicting oil palm production based on water deficit for each soil type. The study was conducted on oil palm plantations in Central Kalimantan, Indonesia, with four soil types in 1,446.15 ha (40 blocks). The source of data collected from oil palm plantations included bunch number, average bunch weight, rainfall, and soil physical and chemical properties for the last 15 years (2007 - 2021). This experimental study used a two-stage cluster sampling method. The results showed that the best productivity, bunch number, and average bunch weight were found on Ultisols. The four soil types tested showed the same annual production distribution dynamic, but the response rate from each soil type showed differences. Entisols and Spodosols were more prone to drought stress due to water deficit than Ultisols and Histosols because of the differences in soil texture. Water deficit causes a decrease in oil palm productivity by 5 - 22% in the first year (Ultisols 12 - 22%; Entisols 12 - 22%; Spodosols 7 - 19%;  Histosols 5 - 15%) and 1 - 8% in the second year (Ultisols 3 - 7%; Entisols 2 - 4%; Spodosols 5 - 8%; Histosols 1 - 5%) compared to previous years production. A decrease in oil palm productivity occurs at 3 - 5 months (bunch failure phase), 1 year (abortion sensitive phase), and 2 - 2.5 years (sex differentiation phase) after a water deficit appears.


Elaeis guineensis Jacq; Oil palm; Productivity; Soil types; Water deficit

Full Text:



Afandi, A. M., Zulkifli, H., Nur, Z. H. A. Z. A., Norliyana, Z. Z., Hisham, H., Saharul, A. M., & Vu, T. T. A. (2022). Oil Palm Water Requirement and the Need for irrigation in Dry malaysian Areas. Journal of Oil Palm Research, 1-15. https://doi.org/10.21894/jopr.2022.0052.

Agusta, H., Pratanu, B. G., Saragih, J. F., Handoyo, G. C., & Sulistiyono, E. (2020). The dynamics of precipitation and its relation to flowering status and oil palm productivity. IOP Conference Series: Earth and Environmental Science, 418(1), 012043. https://doi.org/10.1088/1755-1315/418/1/012043.

Ahmed, A., Ishak, M. Y., Uddin, M. K., Abd Samad, M. Y., Mukhtar, S., & Danhassan, S. S. (2021). Effects of Some Weather Parameters on Oil Palm Production in the Peninsular Malaysia. https://doi.org/10.20944/preprints202106.0456.v1.

Aji, W. A., Saloko, S. A., Kurniawan, I., & Nurcahya, M. A. (2022). The Effect of Rainfall and Rain Days On Palm Oil Production. Tropical Plantation Journal, 1(1), 16-20. https://doi.org/10.22013/tpj.v1I1.3

Ardiyanto, A., Murtilaksono, K., Wahjunie, E. D., & Sutandi, A. (2021). Pengaruh Komponen Neraca Air Terhadap Produktivitas Kelapa Sawit pada Berbagai Jenis Tanah:: Studi Kasus Kalimantan Tengah dan Barat. Jurnal Penelitian Kelapa Sawit, 29(1), 11-20. https://doi.org/10.22302/iopri.jur.jpks.v29i1.125.

Azzeme, A. M., Abdullah, S. N. A., Aziz, M. A., & Wahab, P. E. M. (2016). Oil palm leaves and roots differ in physiological response, antioxidant enzyme activities and expression of stress-responsive genes upon exposure to drought stress. Acta Physiologiae Plantarum, 38(2), 52. https://doi.org/10.1007/s11738-016-2073-2.

Carr, M. K. V. (2011). The Water Relations and Irrigation Requirements of Oil Palm (Elaeis Guineensis): A Review. Experimental Agriculture, 47(4), 629-652. https://doi.org/10.1017/S0014479711000494.

Corley, R., & Tinker, P. (2015). The Oil Palm. The Oil Palm. Chichester, UK: John Wiley & Sons, Ltd. doi, 10, 9781118953297. https://doi.org/10.1002/9781118953297.

Cristancho, J. A., Hanafi, M. M., Syed Omar, S. R., & Rafii, M. Y. (2011). Alleviation of soil acidity improves the performance of oil palm progenies planted on an acid Ultisol. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 61(6), 487-498. https://doi.org/10.1080/09064710.2010.506448.

Darlan, N. H., Pradiko, I., & Siregar, H. H. (2016). Dampak el nino 2015 terhadap performa tanaman kelapa sawit di bagian selatan sumatera (effect of el nino 2015 on oil palm performance in southeastern part of sumatera). Jurnal tanah dan iklim, 40(2), 113-120. https://doi.org/10.2017/jti.v40i2.3146.

El-Nesr, M. N., Alazba, A. A., & Šimůnek, J. (2014). HYDRUS simulations of the effects of dual-drip subsurface irrigation and a physical barrier on water movement and solute transport in soils. Irrigation Science, 32(2), 111-125. https://doi.org/10.1007/s00271-013-0417-x.

Evizal, R., Sari, R. Y., Saputra, H., Setiawan, K., & Prasmatiwi, F. E. (2021). Pengaruh Irigasi pada Pertumbuhan dan Produksi Kelapa Sawit. Jurnal Agrotropika, 20(1), 58-67. https://doi.org/10.23960/ja.v20i1.4848.

Fries, A., Silva, K., Pucha-Cofrep, F., Oñate-Valdivieso, F., & Ochoa-Cueva, P. (2020). Water Balance and Soil Moisture Deficit of Different Vegetation Units under Semiarid Conditions in the Andes of Southern Ecuador. Climate, 8(2), 30. https://doi.org/10.3390/cli8020030.

Gunawan, S., Budiastuti, M. T. S., Sutrisno, J., & Wirianata, H. (2020). Effects of organic materials and rainfall intensity on the productivity of oil palm grown under sandy soil condition. International Journal on Advanced Science, Engineering and Information Technology, 10(1), 356-361. https://doi.org/10.18517/ijaseit.10.1.11001.

Gunawan, S., Sri Budiastuti, M. T., Sutrisno, J., & Wirianata, H. (2021). The Performance of Oil Palm Productivity and Management of Organic Materials at Various Rain Intensity in Sandy Soil. IOP Conference Series: Earth and Environmental Science, 709(1), 012088. https://doi.org/10.1088/1755-1315/709/1/012088.

Harahap, I. Y., Rahutomo, S., Pangaribuan, Y., Hidayat, T. C., Harsanto, W. A., & Fauzi, W. R. (2013). Air & Kelapa Sawit (1 ed.). Pusat Penelitian Kelapa Sawit (PPKS).

Hashim, Z., Muhamad, H., Subramaniam, V., & May, C. Y. (2014). Water footprint: Part 2—FFB production for oil palm planted in Malaysia. Journal of Oil Palm Research, 26(4), 282-291. http://jopr.mpob.gov.my/water-footprint-part-2-ffb-production-for-oil-palm-planted-in-malaysia/.

Hermantoro, H., & Rudyanto, R. (2018). Modeling and Simulation of Oil Palm Plantation Productivity Based on Land Quality and Climate Using Artificial Neural Network. International Journal of Oil Palm, 1(2), 65-70. http://www.ijop.id/index.php/ijop/article/view/9.

Holilullah, H., Afandi, A., & Novpriansyah, H. (2015). Karakterisitk sifat fisik tanah pada lahan produksi rendah dan tinggi di pt great giant pineapple. Jurnal Agrotek Tropika, 3(2). https://doi.org/10.23960/jat.v3i2.2014.

Hossain, M. Z., Bahar, M. M., Sarkar, B., Donne, S. W., Ok, Y. S., Palansooriya, K. N., . . . Bolan, N. (2020). Biochar and its importance on nutrient dynamics in soil and plant. Biochar, 2(4), 379-420. https://doi.org/10.1007/s42773-020-00065-z.

Igwe, C. A., Zarei, M., & Stahr, K. (2013). Soil hydraulic and physico-chemical properties of Ultisols and Inceptisols in south-eastern Nigeria. Archives of Agronomy and Soil Science, 59(4), 491-504. https://doi.org/10.1080/03650340.2011.649475.

Ipir, H. V., Astuti, Y. T. M., & Santosa, T. N. B. (2017). Pengaruh Topografi Terhadap Sex Ratio dan Fruit Set pada Kelapa Sawit. Jurnal Agromast, 2(2). http://journal.instiperjogja.ac.id/index.php/JAI/article/view/401/376.

Jackson, K., & Meetei, T. T. (2018). Influence of soil pH on nutrient availability: A Review. Journal of Emerging Technologies and Innovative Research, 5(12), 707-713. https://www.jetir.org/view?paper=JETIRDZ06090.

Kaeng, S. E., Rogi, J. E., & Pongoh, J. (2017). Neraca Air Lahan untuk Pengembangan Tanaman Kelapa Sawit (Elaeis guinensis Jacq), di Kecamatan Sangkub, Kabupaten Bolaang Mongondow Utara. AGRI-SOSIOEKONOMI, 13(3A), 33-38. https://doi.org/10.35791/agrsosek.13.3A.2017.18012.

Kamalrudin, M., & Abdullah, R. (2014). Malaysian palm oil–moving ahead to sustainable production growth. Oil Palm Industry Economic Journal, 14(1), 24-33. http://opiej.mpob.gov.my/malaysian-palm-oil-moving-ahead-to-sustainable-production-growth/.

Kamil, N. N., & Omar, S. F. (2017). The impact of El Niño and La Niña on Malaysian palm oil industry. Oil Palm Bulletin, 74, 1-6. http://palmoilis.mpob.gov.my/OPB/index.php/2020/03/29/the-impact-of-el-nino-and-la-nina-on-malaysian-palm-oil-industry/.

Koedadiri, A., & Adiwiganda, M. (1998). Integrated reclamation of tertiary soil fertility in oil palm plantation. Warta Pusat Penelitian Kelapa Sawit (Indonesia). https://agris.fao.org/agris-search/search.do?recordID=ID2000001277.

Lindh, M., Hoeber, S., Weih, M., & Manzoni, S. (2022). Interactions of nutrient and water availability control growth and diversity effects in a Salix two‐species mixture. Ecohydrology, 15(5), e2401. https://doi.org/10.1002/eco.2401.

Lopes Filho, W. R. L., Rodrigues, F. H. S., Ferreira, I. V. L., Correa, L. O., Cunha, R. L., & Pinheiro, H. A. (2021). Physiological responses of young oil palm (Elaeis guineensis Jacq.) plants to repetitive water deficit events. Industrial Crops and Products, 172, 114052. https://doi.org/10.1016/j.indcrop.2021.114052.

Madhu, M., & Hatfield, J. L. (2013). Dynamics of Plant Root Growth under Increased Atmospheric Carbon Dioxide. Agronomy Journal, 105(3), 657-669. https://doi.org/10.2134/agronj2013.0018.

Memoli, V., Panico, S. C., Santorufo, L., Barile, R., Di Natale, G., Di Nunzio, A., . . . Maisto, G. (2020). Do Wildfires Cause Changes in Soil Quality in the Short Term? International Journal of Environmental Research and Public Health, 17(15), 5343. https://doi.org/10.3390/ijerph17155343.

Miranda, M., Silva, S., Silveira, N., Pereira, L., Machado, E., & Ribeiro, R. (2021). Root Osmotic Adjustment and Stomatal Control of Leaf Gas Exchange are Dependent on Citrus Rootstocks Under Water Deficit. Journal of Plant Growth Regulation, 40. https://doi.org/10.1007/s00344-020-10069-5.

Monzon, J. P., Jabloun, M., Cock, J., Caliman, J.-P., Couëdel, A., Donough, C. R., . . . Grassini, P. (2022). Influence of weather and endogenous cycles on spatiotemporal yield variation in oil palm. Agricultural and Forest Meteorology, 314, 108789. https://doi.org/10.1016/j.agrformet.2021.108789.

Murugesan, P., Aswathy, G. M., Kumar, K. S., Masilamani, P., Kumar, V., & Ravi, V. (2017). Oil palm (Elaeis guineensis) genetic resources for abiotic stress tolerance: A review. Indian Journal of Agricultural Sciences, 87(5), 571-579. https://epubs.icar.org.in/index.php/IJAgS/article/view/70087.

Musyadik, & Fathnur. (2020). Analisis Hubungan Unsur Cuaca Terhadap Fluktuasi Produksi Sawit Di Kab . Konawe Utara. Jurnal Ecosolum, 9(2), 1-10. https://doi.org/10.20956/ecosolum.v9i2.10641.

Nasution, R. K., Rahayu, E., & Astuti, Y. T. M. (2017). Kajian Produktivitas Tanaman Kelapa Sawit (Elaeis Guineensis Jacq) pada Jenis Tanah yang Berbeda di PT. Subur Arum Makmur I, Desa Danau Lancang, Kec. Tapung Hulu, Kab. Kampar, Riau. Jurnal Agromast, 2(1).

Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. https://doi.org/10.1155/2019/5794869.

Ojeda, G., & Mattana, S. (2015). vila A., AlcaZiz J., Volkmann M., Bachmann J., 2015. Are soil-water functions affected by biochar application, 249-250. https://doi.org/10.1016/j.geoderma.2015.02.014.

Paramananthan, S. (2007). Soils of Ladang Sarana Titian Permata Kecamatan Seruyan Hilir Kabupaten Seruyan Provinsi Kalimantan Tengah Indonesia. PT. Sarana Titiap Permata (unpublished).

Perez, R. l. (2017). Analyzing and modelling the genetic variability of aerial architecture and light interception of oil palm (Elaeis guineensis Jacq) [Thesis, Agricultural sciences. Montpellier SupAgro].

Pinto, E., & Ferreira, I. M. P. L. V. O. (2015). Cation transporters/channels in plants: Tools for nutrient biofortification. Journal of Plant Physiology, 179, 64-82. https://doi.org/10.1016/j.jplph.2015.02.010.

Pujawan, M., Afandi, A., Novpriansyah, H., & Manik, K. E. (2016). Kemantapan agregat tanah pada lahan produksi rendah dan tinggi di PT Great Giant Pineapple. Jurnal Agrotek Tropika, 4(1). https://doi.org/10.23960/jat.v4i1.1915.

Rinaldi, P. S., ’Akromah, Z. N., Ramadhan, H., Husna, S., Syamsudin, D. L., Panggabean, P. B., . . . Wibowo, C. (2019). Physical and Chemical Analysis of Land in Forest Peat Swamp in Resort Pondok soar, Tanjung Puting National Park, Central Kalimantan. IOP Conference Series: Earth and Environmental Science, 394(1), 012037. https://doi.org/10.1088/1755-1315/394/1/012037.

Rivera-Mendes, Y. D., Cuenca, J. C., & Romero, H. M. (2016). Physiological responses of oil palm (Elaeis guineensis Jacq.) seedlings under different water soil conditions. Agronomía Colombiana, 34(2), 163-171. https://doi.org/10.15446/agron.colomb.v34n2.55568.

Salmiyati, heryansyah, A., Idayu, I., & Supriyanto, E. (2014). Oil Palm Plantations Management Effects on Productivity Fresh Fruit Bunch (FFB). APCBEE Procedia, 8, 282-286. https://doi.org/10.1016/j.apcbee.2014.03.041.

Saripudin, E., & Putra, E. T. S. (2015). Midrib and flower phenology emergence of two genotypes of oil palm in Sumatera and Kalimantan. Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia, https://doi.org/10.13057/psnmbi/m010340

Shi, P., Wang, Y., Lei, X., Cao, H., & Li, D. (2017). Correlation and regression analysis of fresh fruit bunch yield components in oil palm (Elaeis guineensis). Guangxi Zhiwu/Guihaia, 37(9), 1130-1136. http://journal.gxzw.gxib.cn/en/.

Shlyannikov, V. (2016). Nonlinear stress intensity factors in fracture mechanics and their applications. Procedia Structural Integrity, 2, 744-752. https://doi.org/10.1016/j.prostr.2016.06.096.

Suharta, N. (2010). Karakteristik dan permasalahan tanah marginal dari batuan sedimen masam di Kalimantan. Jurnal Litbang Pertanian, 29(4), 139-146. https://core.ac.uk/download/pdf/300046217.pdf.

Suharyanti, N. A., Mizuno, K., & Sodri, A. (2020). The effect of water deficit on inflorescence period at palm oil productivity on peatland. E3S Web of Conferences, https://doi.org/10.1051/e3sconf/202021105005

Sukarman, S., Wirianata, H., Budiharjo, K., Primananda, S., & Purwantisari, S. (2021). Estimasi Produksi Tandan Kelapa Sawit Berdasarkan Analisis Ketersediaan Air dengan Teknik Oil Palm Dissection. Jurnal BETA (Biosistem dan Teknik Pertanian), 9(2), 291-299. https://doi.org/10.24843/JBETA.2021.v09.i02.p16.

Suresh, K., Behera, S. K., Manorama, K., & Mathur, R. K. (2021). Phenological stages and degree days of oil palm crosses grown under irrigation in tropical conditions. Annals of applied biology, 178(1), 121-128. https://doi.org/10.1111/aab.12641.

Suwardi. (2021). Manajemen Tanah Spodosols Melalui Sistem Pecah Hardpan dan Mounding untuk Meningkatkan Produksi Tanaman Kelapa Sawit [Thesis, Institut Pertanian STIPER ]. Yogyakarta.

Tani, N., Abdul Hamid, Z. A., Joseph, N., Sulaiman, O., Hashim, R., Arai, T., . . . Kosugi, A. (2020). Small temperature variations are a key regulator of reproductive growth and assimilate storage in oil palm (Elaeis guineensis). Scientific Reports, 10(1), 650. https://doi.org/10.1038/s41598-019-57170-8.

Teixeira das Chagas, K. P., Barbosa Carvalho, B. L., Gurgel Guerra, C. A., Rodrigues Silva, R. A., & de Almeida Vieira, F. (2019). Fenologia do dendezeiro e correlações com variáveis climáticas. Ciência Florestal (01039954), 29(4). https://doi.org/10.5902/1980509822640.

Wigena, I. G. P., Marwanto, S., & Jubaedah, J. (2013). Variation of Peat Bulk Density and Carbon Density under Several Land Use Types. Jurnal tanah dan iklim, 37(2). https://ejurnal.litbang.pertanian.go.id/index.php/jti/article/view/11253.

Wigena, I. G. P., Subardja, D., & Andriati, A. (2013). Evaluasi Kesesuaian Lahan Mineral dan Gambut untuk Peremajaan Tanaman Kelapa Sawit (Studi Kasus pada Beberapa Kebun Plasma di Provinsi Riau). Jurnal Sumberdaya Lahan, 7(2). https://ejurnal.litbang.pertanian.go.id/index.php/jsl/article/view/6435.

Woittiez, L. S., van Wijk, M. T., Slingerland, M., van Noordwijk, M., & Giller, K. E. (2017). Yield gaps in oil palm: A quantitative review of contributing factors. European Journal of Agronomy, 83, 57-77. https://doi.org/10.1016/j.eja.2016.11.002.

Yousefi, M., Mohd Rafie, A. S., Abd Aziz, S., Azrad, S., & Abd Razak, A. b. (2020). Introduction of current pollination techniques and factors affecting pollination effectiveness by Elaeidobius kamerunicus in oil palm plantations on regional and global scale: A review. South African Journal of Botany, 132, 171-179. https://doi.org/10.1016/j.sajb.2020.04.017.


  • There are currently no refbacks.