The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato

Mieke Rochimi Setiawati, Nandha Afrilandha, Reginawanti Hindersah, Pujawati Suryatmana, Betty Natalie Fitriatin, Nadia Nuraniya Kamaluddin

Abstract

The use of N2-fixing bacteria and growth hormone-producing rhizobacteria delivers nitrogen, enhances nutrients absorption by plants, and reduces the usage of inorganic fertilizers. Implementing biofertilizer in the hydroponic system as a means to reduce application of synthetic nutrient is recently in interest due to economic, food safety, and sustainability factors. This study determines the effects of biofertilizer dose on tomato yields in the hydroponics system. A randomized block design was utilized that consisted of seven treatments, namely 100% inorganic fertilizer and 0% biofertilizer (control), and various doses of inorganic nutrient combined with 25%, 50%, 75%, and 100% biofertilizer. The result illustrated that the application of biofertilizer augmented the population of endophytic bacteria, Azotobacter sp., Azospirillum sp., phosphate solubilizing bacteria, and nitrogen content. The distinct combination of biofertilizer did not alter the phosphorus and potassium content compared to control samples however resulted in superior tomato grade. The 50% inorganic fertilizer and 100% biofertilizer combination amplified the weight of the fruit by 36% compared to the control. This finding indicates that the application of biofertilizers in the hydroponic system for tomato plants is not only beneficial in minimizing the dosage of inorganic fertilizers but also enhancing the fruit quality.

Keywords

Biofertilizer; Growth media; Nutrient

Full Text:

PDF

References

Aini, N., Dwi Yamika, W. S., & Pahlevi, R. W. (2019). The effect of nutrient concentration and inoculation of PGPR and AMF on the yield and fruit quality of hydroponic cherry tomatoes (Lycopersicon esculentum Mill. var. cerasiforme). Journal of Applied Horticulture, 21(2). https://doi.org/10.37855/jah.2019.v21i02.20

Alori, E. T., Glick, B. R., & Babalola, O. O. (2017). Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture [Review]. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.00971

Bailey, D. S., & Ferrarezi, R. S. (2017). Valuation of vegetable crops produced in the UVI Commercial Aquaponic System. Aquaculture Reports, 7, 77-82. https://doi.org/10.1016/j.aqrep.2017.06.002

Baldani, J. I., Reis, V. M., Videira, S. S., Boddey, L. H., & Baldani, V. L. D. (2014). The art of isolating nitrogen-fixing bacteria from non-leguminous plants using N-free semi-solid media: a practical guide for microbiologists. Plant and Soil, 384(1), 413-431. https://doi.org/10.1007/s11104-014-2186-6

Barzee, T. J., Edalati, A., El-Mashad, H., Wang, D., Scow, K., & Zhang, R. (2019). Digestate Biofertilizers Support Similar or Higher Tomato Yields and Quality Than Mineral Fertilizer in a Subsurface Drip Fertigation System [Original Research]. Frontiers in Sustainable Food Systems, 3. https://doi.org/10.3389/fsufs.2019.00058

Borgognone, D., Colla, G., Rouphael, Y., Cardarelli, M., Rea, E., & Schwarz, D. (2013). Effect of nitrogen form and nutrient solution pH on growth and mineral composition of self-grafted and grafted tomatoes. Scientia Horticulturae, 149, 61-69. https://doi.org/10.1016/j.scienta.2012.02.012

Cataldi, M. P., Heuer, S., Mauchline, T. H., Wilkinson, M. D., Masters-Clark, E., Di Benedetto, N. A., Corbo, M. R., & Flagella, Z. (2020). Effect of Plant Growth Promoting Bacteria on the Growth of Wheat Seedlings Subjected to Phosphate Starvation. Agronomy, 10(7), 978. https://doi.org/10.3390/agronomy10070978

Chen, W., Yang, F., Zhang, L., & Wang, J. (2016). Organic Acid Secretion and Phosphate Solubilizing Efficiency of Pseudomonas sp. PSB12: Effects of Phosphorus Forms and Carbon Sources. Geomicrobiology Journal, 33(10), 870-877. https://doi.org/10.1080/01490451.2015.1123329

Collavino, M. M., Cabrera, E. V. R., Bruno, C., & Aguilar, O. M. (2020). Effect of soil chemical fertilization on the diversity and composition of the tomato endophytic diazotrophic community at different stages of growth. Brazilian Journal of Microbiology, 51(4), 1965-1975. https://doi.org/10.1007/s42770-020-00373-3

Fahsi, N., Mahdi, I., Mesfioui, A., Biskri, L., & Allaoui, A. (2021). Plant Growth-Promoting Rhizobacteria Isolated from the Jujube (Ziziphus lotus) Plant Enhance Wheat Growth, Zn Uptake, and Heavy Metal Tolerance. Agriculture, 11(4), 316. https://doi.org/10.3390/agriculture11040316

Fenta, L., & Assefa, F. (2017). Isolation and Characterization of phosphate solubilizing bacteria from tomato (Solanum l) rhizosphere and their Effect on growth and phosphorus uptake of the Host plant under green House Experiment. International Journal of Advanced Research, 1-49. https://www.journalijar.com/uploads/339_THESIS-0843.pdf

Fouda, A., Eid, A. M., Elsaied, A., El-Belely, E. F., Barghoth, M. G., Azab, E., Gobouri, A. A., & Hassan, S. E.-D. (2021). Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. Plants, 10(1), 76. https://doi.org/10.3390/plants10010076

Fukami, J., Cerezini, P., & Hungria, M. (2018). Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express, 8(1), 73. https://doi.org/10.1186/s13568-018-0608-1

Glick, B. R. (2012). Plant growth-promoting bacteria: mechanisms and applications [Review]. Scientifica, 2012. https://doi.org/10.6064/2012/963401

Gul, A., Ozaktan, H., Yolageldi, L., Cakir, B., Sahin, M., & Akat, S. (2012). Effect of rhizobacteria on yield of hydroponically grown tomato plants. ISHS Acta Horticulturae 952: International Symposium on Advanced Technologies and Management Towards Sustainable Greenhouse Ecosystems: Greensys2011, https://doi.org/10.17660/ActaHortic.2012.952.98

Gupta, G., Parihar, S. S., Ahirwar, N. K., Snehi, S. K., & Singh, V. (2015). Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of Microbial & Biochemical Technology, 7(2), 096-102. https://doi.org/10.4172/1948-5948.1000188

Gutiérrez-Rojas, I., Torres-Geraldo, A. B., & Moreno-Sarmiento, N. (2011). Optimising carbon and nitrogen sources for Azotobacter chroococcum growth. African Journal of Biotechnology, 10(15), 2951-2958. https://doi.org/10.5897/AJB10.1484

Haichar, F. e. Z., Heulin, T., Guyonnet, J. P., & Achouak, W. (2016). Stable isotope probing of carbon flow in the plant holobiont. Current Opinion in Biotechnology, 41, 9-13. https://doi.org/10.1016/j.copbio.2016.02.023

Ji, S. H., Gururani, M. A., & Chun, S.-C. (2014). Isolation and characterization of plant growth promoting endophytic diazotrophic bacteria from Korean rice cultivars. Microbiological Research, 169(1), 83-98. https://doi.org/10.1016/j.micres.2013.06.003

Jones, J. B., Wolf, B., & Mills, H. A. (1991). Plant analysis handbook: a practical sampling, preparation, analysis, and interpretation guide (Vol. 213). Micro-Macro Pub.

Kalayu, G. (2019). Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 2019, 1-7. https://doi.org/10.1155/2019/4917256

Kandel, S. L., Joubert, P. M., & Doty, S. L. (2017). Bacterial Endophyte Colonization and Distribution within Plants. Microorganisms, 5(4), 77. https://doi.org/10.3390/microorganisms5040077

Kavamura, V. N., Robinson, R. J., Hughes, D., Clark, I., Rossmann, M., Melo, I. S. d., Hirsch, P. R., Mendes, R., & Mauchline, T. H. (2020). Wheat dwarfing influences selection of the rhizosphere microbiome. Scientific Reports, 10(1), 1452. https://doi.org/10.1038/s41598-020-58402-y

Kementan. (2021). Rencana Strategis Direktorat Hortikultura 2020 – 2024. Indonesian Ministry of Agriculture. https://hortikultura.pertanian.go.id/wp-content/uploads/2020/06/Renstra-Horti-2020-2024.pdf

Kuan, K. B., Othman, R., Abdul Rahim, K., & Shamsuddin, Z. H. (2016). Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions. PLOS ONE, 11(3), e0152478. https://doi.org/10.1371/journal.pone.0152478

Kurnianta, M. J., Setiawati, T. C., & Jayus, J. (2019). Pelarutan P dan K dari batuan leusit dan apatit menggunakan kombinasi senyawa humat-BPF-BPK. Menara Perkebunan, 87(2). https://doi.org/10.22302/iribb.jur.mp.v87i2.330

Liu, J., Hu, T., Feng, P., Wang, L., & Yang, S. (2019). Tomato yield and water use efficiency change with various soil moisture and potassium levels during different growth stages. PLOS ONE, 14(3), e0213643. https://doi.org/10.1371/journal.pone.0213643

Mahanty, T., Bhattacharjee, S., Goswami, M., Bhattacharyya, P., Das, B., Ghosh, A., & Tribedi, P. (2017). Biofertilizers: a potential approach for sustainable agriculture development. Environmental Science and Pollution Research, 24(4), 3315-3335. https://doi.org/10.1007/s11356-016-8104-0

Malhotra, M., & Srivastava, S. (2009). Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. European Journal of Soil Biology, 45(1), 73-80. https://doi.org/10.1016/j.ejsobi.2008.05.006

Malusá, E., & Vassilev, N. (2014). A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol, 98(15), 6599-6607. https://doi.org/10.1007/s00253-014-5828-y

Mano, H., Tanaka, F., Nakamura, C., Kaga, H., & Morisaki, H. (2007). Culturable Endophytic Bacterial Flora of the Maturing Leaves and Roots of Rice Plants (<i>Oryza sativa</i>) Cultivated in a Paddy Field. Microbes and Environments, 22(2), 175-185. https://doi.org/10.1264/jsme2.22.175

Mehta, P., Walia, A., Kulshrestha, S., Chauhan, A., & Shirkot, C. K. (2015). Efficiency of plant growth-promoting P-solubilizing Bacillus circulans CB7 for enhancement of tomato growth under net house conditions. Journal of Basic Microbiology, 55(1), 33-44. https://doi.org/10.1002/jobm.201300562

Mitsanis, C., Aktsoglou, D. C., Koukounaras, A., Tsouvaltzis, P., Koufakis, T., Gerasopoulos, D., & Siomos, A. S. (2021). Functional, Flavor and Visual Traits of Hydroponically Produced Tomato Fruit in Relation to Substrate, Plant Training System and Harvesting Time. Horticulturae, 7(9), 311. https://doi.org/10.3390/horticulturae7090311

Munif, A., Nursalim, M., & Pradana, A. P. (2021). The potential of endophytic bacteria isolated from Tagetes sp. to control Meloidogyne spp. infection on tomato plants. Biodiversitas Journal of Biological Diversity, 22(6), 3229-3236. https://doi.org/10.13057/biodiv/d220626

Prasad, A. A., & Babu, S. (2017). Compatibility of Azospirillum brasilense and Pseudomonas fluorescens in growth promotion of groundnut ( Arachis hypogea L.). An Acad Bras Cienc, 89(2), 1027-1040. https://doi.org/10.1590/0001-3765201720160617

Rahimi, A., Amirnia, R., Siavash Moghaddam, S., El Enshasy, H. A., Hanapi, S. Z., & Sayyed, R. Z. (2021). Effect of Different Biological and Organic Fertilizer Sources on the Quantitative and Qualitative Traits of Cephalaria syriaca. Horticulturae, 7(10), 397. https://doi.org/10.3390/horticulturae7100397

Reid, T. E., Kavamura, V. N., Abadie, M., Torres-Ballesteros, A., Pawlett, M., Clark, I. M., Harris, J., & Mauchline, T. H. (2021). Inorganic Chemical Fertilizer Application to Wheat Reduces the Abundance of Putative Plant Growth-Promoting Rhizobacteria [Original Research]. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.642587

Resh, H. M. (2022). Hydroponic food production: a definitive guidebook for the advanced home gardener and the commercial hydroponic grower (8th ed.). CRC Press.

Ribeiro, I. D. A., Volpiano, C. G., Vargas, L. K., Granada, C. E., Lisboa, B. B., & Passaglia, L. M. P. (2020). Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review [Review]. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.590774

Setiawati, R. M., Fitriatin, N. B., Herdiyantoro, D., Bustomi, T., Khumairah, H. F., Fauziah, O. N., & Simarmata, T. (2023). The role of halotolerant N-fixing bacteria on rice agronomic traits on saline soils by path analysis [journal article]. Plant, Soil and Environment, 69(1), 10-17. http://dx.doi.org/10.17221/386/2022-PSE

Tejera, N., Lluch, C., Martìnez-Toledo, M. V., & Gonzàlez-López, J. (2005). Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant and Soil, 270(1), 223-232. https://doi.org/10.1007/s11104-004-1522-7

Tischner, R., & Kaiser, W. (2007). Chapter 18 - Nitrate Assimilation in Plants. In H. Bothe, S. J. Ferguson, & W. E. Newton (Eds.), Biology of the Nitrogen Cycle (pp. 283-301). Elsevier. https://doi.org/10.1016/B978-044452857-5.50019-9

Truffault, V., Ristorto, M., Brajeul, E., Vercambre, G., & Gautier, H. (2019). To Stop Nitrogen Overdose in Soilless Tomato Crop: A Way to Promote Fruit Quality without Affecting Fruit Yield. Agronomy, 9(2), 80. https://doi.org/10.3390/agronomy9020080

Tsukanova, K. A., Сhеbоtаr, V. К., Meyer, J. J. M., & Bibikova, T. N. (2017). Effect of plant growth-promoting Rhizobacteria on plant hormone homeostasis [Review]. South African Journal of Botany, 113, 91-102. https://doi.org/10.1016/j.sajb.2017.07.007

Verma, R., Chourasia, S. K., & Jha, M. N. (2011). Population dynamics and identification of efficient strains of Azospirillum in maize ecosystems of Bihar (India). 3 Biotech, 1(4), 247-253. https://doi.org/10.1007/s13205-011-0031-7

Whitman, W. B. (2015). Bergey's manual of systematics of Archaea and Bacteria (Vol. 410). Wiley Online Library. https://doi.org/10.1002/9781118960608

Woitke, M., & Schitzler, W. H. (2005). Biotic Stress Relief on Plants in Hydroponic Systems. ISHS Acta Horticulturae 697: International Symposium on Soilless Culture and Hydroponics, https://doi.org/10.17660/ActaHortic.2005.697.73

Worsley, S. F., Macey, M. C., Prudence, S. M. M., Wilkinson, B., Murrell, J. C., & Hutchings, M. I. (2021). Investigating the Role of Root Exudates in Recruiting Streptomyces Bacteria to the Arabidopsis thaliana Microbiome [Original Research]. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.686110

Yadav, G., Srivastva, R., & Gupta, P. (2021). Endophytes and Their Applications as Biofertilizers. In P. Bhatt, S. Gangola, D. Udayanga, & G. Kumar (Eds.), Microbial Technology for Sustainable Environment (pp. 95-123). Springer Singapore. https://doi.org/10.1007/978-981-16-3840-4_7

Yang, T., & Kim, H.-J. (2020). Characterizing Nutrient Composition and Concentration in Tomato-, Basil-, and Lettuce-Based Aquaponic and Hydroponic Systems. Water, 12(5), 1259. https://doi.org/10.3390/w12051259

Zaheer, M. S., Ali, H. H., Iqbal, M. A., Erinle, K. O., Javed, T., Iqbal, J., Hashmi, M. I. U., Mumtaz, M. Z., Salama, E. A. A., Kalaji, H. M., Wróbel, J., & Dessoky, E. S. (2022). Cytokinin Production by Azospirillum brasilense Contributes to Increase in Growth, Yield, Antioxidant, and Physiological Systems of Wheat (Triticum aestivum L.) [Original Research]. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.886041

Zhao, Y., Lu, G., Jin, X., Wang, Y., Ma, K., Zhang, H., Yan, H., & Zhou, X. (2022). Effects of Microbial Fertilizer on Soil Fertility and Alfalfa Rhizosphere Microbiota in Alpine Grassland. Agronomy, 12(7), 1722. https://doi.org/10.3390/agronomy12071722

Refbacks

  • There are currently no refbacks.