Characteristics of inceptisol ameliorated with rice husk biochar to glyphosate adsorption

Herviyanti Herviyanti, Amsar Maulana, Arestha Leo Lita, Teguh Budi Prasetyo, Moli Monikasari, Ridho Ryswaldi


As an ameliorant, rice husk biochar (RHB) can improve soil quality and long-term carbon absorption and interaction with glyphosate during adsorption. This study investigated the ability of Inceptisol ameliorated with RHB to absorb glyphosate. Inceptisol ameliorated with 40-t ha-1 RHB increased the soil surface charge (ΔpH) by improving soil pH H2O, electrical conductivity, cation exchange capacity, and soil organic matter. Linear and nonlinear models showed that fitting Langmuir and Freundlich isotherms is suitable for this study. The isotherm adsorption of glyphosate sequentially occurs in the Freundlich and Langmuir models (Inceptisol + 40-t ha-1 RHB > Inceptisol), where the Freundlich model (R2 = 0.938) is dominated by glyphosate adsorption on Inceptisol + 40-t ha-1 RHB with n of 0.46 and KF of 1.747 mg kg-1, whereas the Langmuir model (R2 = 0.8608) with Qm of 30.01 mg kg-1 and KL of 0.08 L mg-1 at a concentration level of 100 ppm and pH of the glyphosate solution 5.20 units. The glyphosate adsorption was also supported by changes in functional groups, where Fourier transform infrared spectroscopy shows a decrease in transmittance in the O-H; C=C; C-O; C-H, and mineral groups, indicating an increase in the adsorption capacity in Inceptisol ameliorated with 40-t ha-1 RHB. This study indicated that the physicochemical properties of Inceptisol are important in controlling the glyphosate adsorption ability of RHB in soils.


Adsorption; Amelioration Technology; Inceptisol; Glyphosate; Rice Husk Biochar

Full Text:



Adil, A., Canan, K., & Metin, T. (2012). Humic acid application alleviate salinity stress of bean (Phaseolus vulgaris L.) plants decreasing membrane leakage. African Journal of Agricultural Research, 7(7), 1073-1086.

Ahmed, A. A., Leinweber, P., & Kühn, O. (2018). Unravelling the nature of glyphosate binding to goethite surfaces by ab initio molecular dynamics simulations. Physical Chemistry Chemical Physics, 20(3), 1531-1539.

Aisyahlika, S. Z., Firdaus, M. L., & Elvia, R. (2018). Kapasitas adsorpsi arang aktif cangkang Bintaro (Cerbera odollam) terhadap zat warna sintetis Reactive RED-120 dan Reactive BLUE-198. Alotrop, 2(2), 148-155.

Caceres-Jensen, L., Rodríguez-Becerra, J., Sierra-Rosales, P., Escudey, M., Valdebenito, J., Neira-Albornoz, A., . . . Villagra, C. A. (2019). Electrochemical method to study the environmental behavior of Glyphosate on volcanic soils: Proposal of adsorption-desorption and transport mechanisms. Journal of hazardous materials, 379, 120746.

De, A., Bose, R., Kumar, A., & Mozumdar, S. (2014). Targeted delivery of pesticides using biodegradable polymeric nanoparticles. Springer.

Derakhshan, Z., Baghapour, M. A., Ranjbar, M., & Faramarzian, M. (2013). Adsorption of methylene blue dye from aqueous solutions by modified pumice stone: kinetics and equilibrium studies.

Flores, F. M., Torres Sánchez, R. M., & dos Santos Afonso, M. (2018). Some aspects of the adsorption of glyphosate and its degradation products on montmorillonite. Environmental Science and Pollution Research, 25(18), 18138–18146.

Glass, R. L. (1981). Colorimetric determination of glyphosate in water after oxidation to orthophosphate. Analytical Chemistry, 53(6), 921-923.

Gros, P., Ahmed, A. A., Kühn, O., & Leinweber, P. (2019). Influence of metal ions on glyphosate detection by FMOC-Cl. Environmental monitoring and assessment, 191(4), 1-12.

Gupta, N. K., Gupta, A., Ramteke, P., Sahoo, H., & Sengupta, A. (2019). Biosorption-a green method for the preconcentration of rare earth elements (REEs) from waste solutions: A review. Journal of Molecular Liquids, 274, 148-164.

Herath, G. A. D., Poh, L. S., & Ng, W. J. (2019). Statistical optimization of glyphosate adsorption by biochar and activated carbon with response surface methodology. Chemosphere, 227, 533-540.

Herviyanti, Maulana, A., Lita, A., Prasetyo, T., & Ryswaldi, R. (2022). Characteristics of biochar methods from bamboo as améliorant. IOP Conference Series: Earth and Environmental Science,

Herviyanti, H., Maulana, A., Prima, S., Aprisal, A., Crisna, S., & Lita, A. (2020). Effect of biochar from young coconut waste to improve chemical properties of ultisols and growth coffee [Coffea arabica L.] plant seeds. IOP Conference Series: Earth and Environmental Science,

Hossain, S. S., Mathur, L., Singh, P., & Majhi, M. R. (2017). Preparation of forsterite refractory using highly abundant amorphous rice husk silica for thermal insulation. Journal of Asian Ceramic Societies, 5(2), 82-87.

Kassimi, A., Achour, Y., Himri, M., Laamari, M. R., & Haddad, M. (2021). High efficiency of natural Safiot Clay to remove industrial dyes from aqueous media: Kinetic, isotherm adsorption and thermodynamic studies. Biointerface Research in Applied Chemistry, 11(5), 12717-12731.

Kumari, K., Moldrup, P., Paradelo, M., Elsgaard, L., & de Jonge, L. W. (2016). Soil properties control glyphosate sorption in soils amended with birch wood biochar. Water, Air, & Soil Pollution, 227(6), 1-12.

Lita, A., Maulana, A., & Ryswaldi, R. (2022). Characteristics Biochar from Young Coconut Waste based on Particle Size as Améliorant. IOP Conference Series: Earth and Environmental Science,

López-Luna, J., Ramírez-Montes, L. E., Martinez-Vargas, S., Martínez, A. I., Mijangos-Ricardez, O. F., González-Chávez, M. d. C. A., . . . Vázquez-Hipólito, V. (2019). Linear and nonlinear kinetic and isotherm adsorption models for arsenic removal by manganese ferrite nanoparticles. SN Applied Sciences, 1(8), 950.

Ma’ruf, A., Pramudono, B., & Aryanti, N. (2017). Lignin isolation process from rice husk by alkaline hydrogen peroxide: Lignin and silica extracted. AIP Conference Proceedings,

Maggi, F., la Cecilia, D., Tang, F. H., & McBratney, A. (2020). The global environmental hazard of glyphosate use. Science of the total environment, 717, 137167.

Maulana, A., Herviyanti, Prasetyo, T., Harianti, M., & Lita, A. (2022). Effect of Pyrolysis Methods on Characteristics of Biochar from Young Coconut Waste as Ameliorant. IOP Conference Series: Earth and Environmental Science,

Maulana, A., Prima, S., Rezki, D., Sukma, V., Fitriani, A., & Herviyanti. (2021). Carbon sequestration from bamboo biochar on the productivity of ultisols and soybean [Glycine max L.] plants. IOP Conference Series: Earth and Environmental Science,

Mindari, W., Aini, N., Kusuma, Z., & Syekhfani, S. (2014). Effects of humic acid-based cation buffer on chemical characteristics of saline soil and growth of maize. Journal of Degraded and Mining Lands Management, 2(1), 259.

Mujinya, B., Van Ranst, E., Verdoodt, A., Baert, G., & Ngongo, L. (2010). Termite bioturbation effects on electro-chemical properties of Ferralsols in the Upper Katanga (DR Congo). Geoderma, 158(3-4), 233-241.

Okada, E., Costa, J. L., & Bedmar, F. (2016). Adsorption and mobility of glyphosate in different soils under no-till and conventional tillage. Geoderma, 263, 78-85.

Orcelli, T., di Mauro, E., Urbano, A., Valezi, D. F., da Costa, A., Zaia, C. T. B., & Zaia, D. A. (2018). Study of interaction between glyphosate and goethite using several methodologies: an environmental perspective. Water, Air, & Soil Pollution, 229(5), 1-18.

Pereira, R. C., Anizelli, P. R., Di Mauro, E., Valezi, D. F., da Costa, A. C. S., Zaia, C. T. B., & Zaia, D. A. (2019). The effect of pH and ionic strength on the adsorption of glyphosate onto ferrihydrite. Geochemical transactions, 20(1), 1-14.

Pereira, R. C., da Costa, A. C., Ivashita, F. F., Paesano Jr, A., & Zaia, D. A. (2020). Interaction between glyphosate and montmorillonite in the presence of artificial seawater. Heliyon, 6(3), e03532.

Premarathna, K., Rajapaksha, A. U., Adassoriya, N., Sarkar, B., Sirimuthu, N. M., Cooray, A., . . . Vithanage, M. (2019). Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. Journal of environmental management, 238, 315-322.

Preocanin, T., Abdelmonem, A., Montavon, G., & Luetzenkirchen, J. (2016). Charging behavior of clays and clay minerals in aqueous electrolyte solutions—experimental methods for measuring the charge and interpreting the results. In G. M. do Nascimento (Ed.), Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals (pp. 51-88). IntechOpen.

Shaaban, A., Se, S.-M., Mitan, N. M. M., & Dimin, M. (2013). Characterization of biochar derived from rubber wood sawdust through slow pyrolysis on surface porosities and functional groups. Procedia Engineering, 68, 365-371.

Sidoli, P., Baran, N., & Angulo-Jaramillo, R. (2016). Glyphosate and AMPA adsorption in soils: laboratory experiments and pedotransfer rules. Environmental Science and Pollution Research, 23(6), 5733-5742.

Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar: a guide to analytical methods. CRC Press, Boca Raton, FL, USA.

Sudirja, R., Arifin, M., & Joy, B. (2015). Adsorpsi Paraquat dan Sifat Tanah pada Tiga Subgrup Tanah Akibat Pemberian Amelioran. Agrikultura, 26(1), 41-48.

Tévez, H. R., & Afonso, M. d. S. (2015). pH dependence of Glyphosate adsorption on soil horizons. Boletín de la Sociedad Geológica Mexicana, 67(3), 509-516.

Trigo, C., Cox, L., & Spokas, K. (2016). Influence of pyrolysis temperature and hardwood species on resulting biochar properties and their effect on azimsulfuron sorption as compared to other sorbents. Science of the total environment, 566, 1454-1464.

Tsamo, C., Assabe, M., Argue, J., & Ihimbru, S. (2019). Discoloration of methylene blue and slaughter house wastewater using maize cob biochar produced using a constructed burning chamber: a comparative study. Scientific African, 3, e00078.

Tzanetou, E., & Karasali, H. (2020). Glyphosate Residues in Soil and Air: An Integrated Review. In D. Kontogiannatos, A. Kourti, & K. F. Mendes (Eds.), Pests, Weeds and Diseases in Agricultural Crop and Animal Husbandry Production. IntechOpen.

Varjani, S., Kumar, G., & Rene, E. R. (2019). Developments in biochar application for pesticide remediation: current knowledge and future research directions. Journal of environmental management, 232, 505-513.

Viglašová, E., Galamboš, M., Danková, Z., Krivosudský, L., Lengauer, C. L., Hood-Nowotny, R., . . . Briančin, J. (2018). Production, characterization and adsorption studies of bamboo-based biochar/montmorillonite composite for nitrate removal. Waste Management, 79, 385-394.

Wang, X., Gu, Y., Tan, X., Liu, Y., Zhou, Y., Hu, X., . . . Liu, S. (2019). Functionalized biochar/clay composites for reducing the bioavailable fraction of arsenic and cadmium in river sediment. Environmental toxicology and chemistry, 38(10), 2337-2347.

Yao, Y., Gao, B., Fang, J., Zhang, M., Chen, H., Zhou, Y., . . . Yang, L. (2014). Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal, 242, 136-143.

Zhan, H., Feng, Y., Fan, X., & Chen, S. (2018). Recent advances in glyphosate biodegradation. Applied microbiology and biotechnology, 102(12), 5033-5043.


  • There are currently no refbacks.