Soil carbon mineralization affected by hot water and ultrasound pretreatment
Abstract
Keywords
Full Text:
PDFReferences
Albalasmeh, A. A., Berhe, A. A., & Ghezzehei, T. A. (2013). A new method for rapid determination of carbohydrate and total carbon concentrations using UV spectrophotometry. Carbohydrate Polymers, 97(2), 253-261. https://doi.org/10.1016/j.carbpol.2013.04.072
Albero, B., Tadeo, J. L., & Pérez, R. A. (2019). Ultrasound-assisted extraction of organic contaminants. TrAC Trends in Analytical Chemistry, 118, 739-750. https://doi.org/10.1016/j.trac.2019.07.007
Bongiorno, G., Bünemann, E. K., Oguejiofor, C. U., Meier, J., Gort, G., Comans, R., Mäder, P., Brussaard, L., & de Goede, R. (2019). Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecological Indicators, 99, 38-50. https://doi.org/10.1016/j.ecolind.2018.12.008
Chantigny, M. H., Harrison-Kirk, T., Curtin, D., & Beare, M. (2014). Temperature and duration of extraction affect the biochemical composition of soil water-extractable organic matter. Soil Biology and Biochemistry, 75, 161-166. https://doi.org/10.1016/j.soilbio.2014.04.011
Cheng, W., Padre, A. T., Sato, C., Shiono, H., Hattori, S., Kajihara, A., Aoyama, M., Tawaraya, K., & Kumagai, K. (2016). Changes in the soil C and N contents, C decomposition and N mineralization potentials in a rice paddy after long-term application of inorganic fertilizers and organic matter. Soil Science and Plant Nutrition, 62(2), 212-219. https://doi.org/10.1080/00380768.2016.1155169
Cheng, W., Yagi, K., Akiyama, H., Nishimura, S., Sudo, S., Fumoto, T., Hasegawa, T., Hartley, A. E., & Megonigal, J. P. (2007). An empirical model of soil chemical properties that regulate methane production in Japanese rice paddy soils. J Environ Qual, 36(6), 1920-1925. https://doi.org/10.2134/jeq2007.0201
Davidson, E. A., & Janssens, I. A. (2006). Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440(7081), 165-173. https://doi.org/10.1038/nature04514
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. https://doi.org/10.1021/ac60111a017
Fischer, H., Meyer, A., Fischer, K., & Kuzyakov, Y. (2007). Carbohydrate and amino acid composition of dissolved organic matter leached from soil. Soil Biology and Biochemistry, 39(11), 2926-2935. https://doi.org/10.1016/j.soilbio.2007.06.014
Gao, X., Huang, R., Li, J., Wang, C., Lan, T., Li, Q., Deng, O., Tao, Q., & Zeng, M. (2020). Temperature induces soil organic carbon mineralization in urban park green spaces, Chengdu, southwestern China: Effects of planting years and vegetation types. Urban Forestry & Urban Greening, 54, 126761. https://doi.org/10.1016/j.ufug.2020.126761
Ghani, A., Dexter, M., & Perrott, K. W. (2003). Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biology and Biochemistry, 35(9), 1231-1243. https://doi.org/10.1016/S0038-0717(03)00186-X
Gunina, A., & Kuzyakov, Y. (2015). Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate. Soil Biology and Biochemistry, 90, 87-100. https://doi.org/10.1016/j.soilbio.2015.07.021
Hamkalo, Z., & Bedernichek, T. (2014). Total, cold and hot water extractable organic carbon in soil profile: impact of land-use change. Zemdirbyste-Agriculture, 101(2), 125-132. https://doi.org/10.13080/z-a.2014.101.016
Kautsar, V., Cheng, W., Tawaraya, K., Yamada, S., Toriyama, K., & Kobayashi, K. (2020). Carbon and nitrogen stocks and their mineralization potentials are higher under organic than conventional farming practices in Japanese Andosols. Soil Science and Plant Nutrition, 66(1), 144-151. https://doi.org/10.1080/00380768.2019.1705739
Lee, Y. B., Lorenz, N., Dick, L. K., & Dick, R. P. (2007). Cold Storage and Pretreatment Incubation Effects on Soil Microbial Properties [https://doi.org/10.2136/sssaj2006.0245]. Soil Science Society of America Journal, 71(4), 1299-1305. https://doi.org/10.2136/sssaj2006.0245
Li, L., Zhang, X., Zhang, P., Zheng, J., & Pan, G. (2007). Variation of organic carbon and nitrogen in aggregate size fractions of a paddy soil under fertilisation practices from Tai Lake Region, China. Journal of the Science of Food and Agriculture, 87(6), 1052-1058. https://doi.org/10.1002/jsfa.2806
Liu, H., Wu, Y., Ai, Z., Zhang, J., Zhang, C., Xue, S., & Liu, G. (2019). Effects of the interaction between temperature and revegetation on the microbial degradation of soil dissolved organic matter (DOM) – A DOM incubation experiment. Geoderma, 337, 812-824. https://doi.org/10.1016/j.geoderma.2018.10.041
Lowe, L. E. (1978). Chapter 2 Carbohydrates in Soil. In M. Schnitzer & S. U. Khan (Eds.), Developments in Soil Science (Vol. 8, pp. 65-93). Elsevier. https://doi.org/10.1016/S0166-2481(08)70017-5
Nguyen-Sy, T., Cheng, W., Kimani, S. M., Shiono, H., Sugawara, R., Tawaraya, K., Watanabe, T., & Kumagai, K. (2020). Stable carbon isotope ratios of water-extractable organic carbon affected by application of rice straw and rice straw compost during a long-term rice experiment in Yamagata, Japan. Soil Science and Plant Nutrition, 66(1), 125-132. https://doi.org/10.1080/00380768.2019.1708209
Nguyen-Sy, T., Nguyen-Thi, T., Tran-Thi, N. T., Do-Thi, V. T., Hanh, D. H., Le-Thi, D. H., Nguyen-Thi, T. C., Nguyen-Hoang, P. S., & Le-Duc, T. (2021, 12-13 March 2021). Ultrasound as a green technique to enhance soil mineralization potential. Proceeding of 2020 Applying New Technology in Green Buildings (ATiGB), Da Nang City, Viet Nam. https://doi.org/10.1109/ATiGB50996.2021.9423316
Nguyen-Sy, T., Tan, X., Phuong, N. T. D., Aron, N. S. M., Chew, K. W., Khoo, K. S., Thu, T. T. N., Thi Lim, D., Dong, P. D., Ang, W. L., & Show, P. L. (2021). Advanced green bioprocess of soil carbohydrate extraction from long-term conversion of forest soil to paddy field. Journal of Environmental Chemical Engineering, 9(5), 106021. https://doi.org/10.1016/j.jece.2021.106021
Pansu, M., & Thuriès, L. (2003). Kinetics of C and N mineralization, N immobilization and N volatilization of organic inputs in soil. Soil Biology and Biochemistry, 35(1), 37-48. https://doi.org/10.1016/S0038-0717(02)00234-1
Rakhsh, F., & Golchin, A. (2018). Carbohydrate concentrations and enzyme activities as influenced by exchangeable cations, mineralogy and clay content. Applied Clay Science, 163, 214-226. https://doi.org/10.1016/j.clay.2018.07.031
Rendana, M., Idris, W. M. R., Abdul Rahim, S., Ali Rahman, Z., & Lihan, T. (2021). Characterization of physical, chemical and microstructure properties in the soft clay soil of the paddy field area. Sains Tanah - Journal of Soil Science and Agroclimatology, 18(1), 81-88. https://doi.org/10.20961/stjssa.v18i1.50489
Sardiana, I. K., & Kusmiyarti, T. B. (2021). Sustainability performance of organic farming at vegetable fields in Tabanan, Bali, Indonesia. Sains Tanah - Journal of Soil Science and Agroclimatology, 18(1), 7-14. https://doi.org/10.20961/stjssa.v18i1.45482
Tanaka, H., Hamada, R., Kondoh, A., & Sakagami, K.-i. (1990). Determination of Component Sugars in Soil Organic Matter by HPLC. Zentralblatt für Mikrobiologie, 145(8), 621-628. https://doi.org/10.1016/S0232-4393(11)80282-9
Tang, S., Cheng, W., Hu, R., Guigue, J., Hattori, S., Tawaraya, K., Tokida, T., Fukuoka, M., Yoshimoto, M., Sakai, H., Usui, Y., Xu, X., & Hasegawa, T. (2021). Five-year soil warming changes soil C and N dynamics in a single rice paddy field in Japan. Science of The Total Environment, 756, 143845. https://doi.org/10.1016/j.scitotenv.2020.143845
Tang, S., Cheng, W., Hu, R., Guigue, J., Kimani, S. M., Tawaraya, K., & Xu, X. (2016). Simulating the effects of soil temperature and moisture in the off-rice season on rice straw decomposition and subsequent CH4 production during the growth season in a paddy soil. Biology and Fertility of Soils, 52(5), 739-748. https://doi.org/10.1007/s00374-016-1114-8
Tang, S., Cheng, W., Hu, R., Nakajima, M., Guigue, J., Kimani, S. M., Sato, S., Tawaraya, K., & Xu, X. (2017). Decomposition of soil organic carbon influenced by soil temperature and moisture in Andisol and Inceptisol paddy soils in a cold temperate region of Japan. Journal of Soils and Sediments, 17(7), 1843-1851. https://doi.org/10.1007/s11368-016-1607-y
Uzoho, B. U., & Igbojionu, G. U. (2014). Carbohydrate Distribution of Particle Size Fractions of Soils in Relation to Land-use Types in Mbaise, Southeastern Nigeria. Journal of Biology, Agriculture and Healthcare, 4, 27-36. https://iiste.org/Journals/index.php/JBAH/article/view/10563
Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils-effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251-264. https://journals.lww.com/soilsci/Fulltext/1947/04000/A_CRITICAL_EXAMINATION_OF_A_RAPID_METHOD_FOR.1.aspx
Wang, W., Wu, X., Chen, A., Xie, X., Wang, Y., & Yin, C. (2016). Mitigating effects of ex situ application of rice straw on CH4 and N2O emissions from paddy-upland coexisting system. Scientific Reports, 6(1), 37402. https://doi.org/10.1038/srep37402
Wu, X., Nguyen-Sy, T., Sun, Z., Wantanabe, T., Tawaraya, K., Hu, R., & Cheng, W. (2020). Soil Organic Matter Dynamics as Affected by Land Use Change from Rice Paddy to Wetland. Wetlands, 40(6), 2199-2207. https://doi.org/10.1007/s13157-020-01321-5
Refbacks
- There are currently no refbacks.