Differential response to acidic pH in rice seedlings
Abstract
Keywords
Full Text:
PDFReferences
Ai, C., Liang, G., Sun, J., He, P., Tang, S., Yang, S., Zhou, W., & Wang, X. (2015). The alleviation of acid soil stress in rice by inorganic or organic ameliorants is associated with changes in soil enzyme activity and microbial community composition. Biology and Fertility of Soils, 51(4), 465-477. https://doi.org/10.1007/s00374-015-0994-3
Arndt, S. K., Irawan, A., & Sanders, G. J. (2015). Apoplastic water fraction and rehydration techniques introduce significant errors in measurements of relative water content and osmotic potential in plant leaves. Physiologia Plantarum, 155(4), 355-368. https://doi.org/10.1111/ppl.12380
Awasthi, J. P., Kusunoki, K., Saha, B., Kobayashi, Y., Koyama, H., & Panda, S. K. (2021). Comparative RNA-Seq analysis of the root revealed transcriptional regulation system for aluminum tolerance in contrasting indica rice of North East India. Protoplasma, 258(3), 517-528. https://doi.org/10.1007/s00709-020-01581-2
Awasthi, J. P., Paraste, K. S., Rathore, M., Varun, M., Jaggi, D., & Kumar, B. (2018). Effect of elevated CO2 on Vigna radiata and two weed species: yield, physiology and crop–weed interaction. Crop and Pasture Science, 69(6), 617-631. https://doi.org/10.1071/CP17192
Awasthi, J. P., Saha, B., Chowardhara, B., Devi, S. S., Borgohain, P., & Panda, S. K. (2018). Qualitative Analysis of Lipid Peroxidation in Plants under Multiple Stress Through Schiff’s Reagent: A Histochemical Approach. Bio-protocol, 8(8), e2807. https://doi.org/10.21769/BioProtoc.2807
Awasthi, J. P., Saha, B., Panigrahi, J., Yanase, E., Koyama, H., & Panda, S. K. (2019). Redox balance, metabolic fingerprint and physiological characterization in contrasting North East Indian rice for Aluminum stress tolerance. Scientific Reports, 9(1), 8681. https://doi.org/10.1038/s41598-019-45158-3
Awasthi, J. P., Saha, B., Regon, P., Sahoo, S., Chowra, U., Pradhan, A., Roy, A., & Panda, S. K. (2017). Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PloS one, 12(4), e0176357. https://doi.org/10.1371/journal.pone.0176357
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez, M. (2017). Aluminum, a Friend or Foe of Higher Plants in Acid Soils [Review]. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.01767
Borgohain, P., Chowardhara, B., Saha, B., Awasthi, J. P., Regon, P., Sahoo, S., & Panda, S. K. (2020). Exogenous trehalose ameliorates methyl viologen induced oxidative stress through regulation of stomatal pore opening and glutathione metabolism in tomato seedlings. Vegetos, 33(4), 665-681. https://doi.org/10.1007/s42535-020-00155-0
Chowardhara, B., Borgohain, P., Saha, B., Awasthi, J. P., Moulick, D., & Panda, S. K. (2019). Phytotoxicity of Cd and Zn on three popular Indian mustard varieties during germination and early seedling growth. Biocatalysis and Agricultural Biotechnology, 21, 101349. https://doi.org/10.1016/j.bcab.2019.101349
Devi, S. S., Saha, B., Awasthi, J. P., Regon, P., & Panda, S. K. (2020). Redox status and oxalate exudation determines the differential tolerance of two contrasting varieties of ‘Assam tea’ [Camelia sinensis (L.) O. Kuntz] in response to aluminum toxicity. Horticulture, Environment, and Biotechnology, 61(3), 485-499. https://doi.org/10.1007/s13580-020-00241-x
Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a Novel Aluminum Tolerance Phenotyping Platform Used for Comparisons of Cereal Aluminum Tolerance and Investigations into Rice Aluminum Tolerance Mechanisms Plant Physiology, 153(4), 1678-1691. https://doi.org/10.1104/pp.110.156794
Farmer, E. E., & Mueller, M. J. (2013). ROS-Mediated Lipid Peroxidation and RES-Activated Signaling. Annual Review of Plant Biology, 64(1), 429-450. https://doi.org/10.1146/annurev-arplant-050312-120132
IRRI. (2016). Annual Report 2016. International Rice Research Institute. http://books.irri.org/AR2016_content.pdf
Kariya, K., Demiral, T., Sasaki, T., Tsuchiya, Y., Turkan, I., Sano, T., Hasezawa, S., & Yamamoto, Y. (2013). A novel mechanism of aluminium-induced cell death involving vacuolar processing enzyme and vacuolar collapse in tobacco cell line BY-2. Journal of Inorganic Biochemistry, 128, 196-201. https://doi.org/10.1016/j.jinorgbio.2013.07.001
Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhaes, J. V. (2015). Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annual Review of Plant Biology, 66(1), 571-598. https://doi.org/10.1146/annurev-arplant-043014-114822
Krstic, D., Djalovic, I., Nikezic, D., & Bjelic, D. (2012). Aluminium in Acid Soils: Chemistry, Toxicity and Impact on Maize Plants. In A. Aladjadjiyan (Ed.), Food Production - Approaches, Challenges and Tasks. IntechOpen. https://doi.org/10.5772/33077
Lazarević, B., Horvat, T., & Poljak, M. (2014). Effect of Acid Aluminous Soil on Photosynthetic Parameters of Potato (Solanum tuberosum L.). Potato research, 57(1), 33-46. https://doi.org/10.1007/s11540-014-9251-7
Lin, Z., Wang, Y.-L., Cheng, L.-S., Zhou, L.-L., Xu, Q.-T., Liu, D.-C., Deng, X.-Y., Mei, F.-Z., & Zhou, Z.-Q. (2021). Mutual regulation of ROS accumulation and cell autophagy in wheat roots under hypoxia stress. Plant Physiology and Biochemistry, 158, 91-102. https://doi.org/10.1016/j.plaphy.2020.11.049
Mattiello, L., Kirst, M., da Silva, F. R., Jorge, R. A., & Menossi, M. (2010). Transcriptional profile of maize roots under acid soil growth. BMC Plant Biology, 10(1), 196. https://doi.org/10.1186/1471-2229-10-196
Murchie, E. H., & Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany, 64(13), 3983-3998. https://doi.org/10.1093/jxb/ert208
Regon, P., Dey, S., Chowardhara, B., Saha, B., Kar, S., Tanti, B., & Panda, S. K. (2021). Physio-biochemical and molecular assessment of Iron (Fe2+) toxicity responses in contrasting indigenous aromatic Joha rice cultivars of Assam, India. Protoplasma, 258(2), 289-299. https://doi.org/10.1007/s00709-020-01574-1
Ruban, A. V., & Murchie, E. H. (2012). Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: A new approach. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(7), 977-982. https://doi.org/10.1016/j.bbabio.2012.03.026
Saha, B., Mishra, S., Awasthi, J. P., Sahoo, L., & Panda, S. K. (2016). Enhanced drought and salinity tolerance in transgenic mustard [Brassica juncea (L.) Czern & Coss.] overexpressing Arabidopsis group 4 late embryogenesis abundant gene (AtLEA4-1). Environmental and Experimental Botany, 128, 99-111. https://doi.org/10.1016/j.envexpbot.2016.04.010
Saha, B., Swain, D., Borgohain, P., Rout, G. R., Koyama, H., & Panda, S. K. (2020). Enhanced exudation of malate in the rhizosphere due to AtALMT1 overexpression in blackgram (Vigna mungo L.) confers increased aluminium tolerance. Plant Biology, 22(4), 701-708. https://doi.org/10.1111/plb.13112
Saikia, J., Sarma, R. K., Dhandia, R., Yadav, A., Bharali, R., Gupta, V. K., & Saikia, R. (2018). Alleviation of drought stress in pulse crops with ACC deaminase producing rhizobacteria isolated from acidic soil of Northeast India. Scientific Reports, 8(1), 3560. https://doi.org/10.1038/s41598-018-21921-w
Song, H., Xu, X., Wang, H., Wang, H., & Tao, Y. (2010). Exogenous γ-aminobutyric acid alleviates oxidative damage caused by aluminium and proton stresses on barley seedlings. Journal of the Science of Food and Agriculture, 90(9), 1410-1416. https://doi.org/10.1002/jsfa.3951
Wu, A., Allu, A. D., Garapati, P., Siddiqui, H., Dortay, H., Zanor, M.-I., Asensi-Fabado, M. A., Munné-Bosch, S., Antonio, C., Tohge, T., Fernie, A. R., Kaufmann, K., Xue, G.-P., Mueller-Roeber, B., & Balazadeh, S. (2012). JUNGBRUNNEN1, a Reactive Oxygen Species–Responsive NAC Transcription Factor, Regulates Longevity in Arabidopsis The Plant Cell, 24(2), 482-506. https://doi.org/10.1105/tpc.111.090894
Refbacks
- There are currently no refbacks.