Metal ion toxicity and tolerance mechanisms in plants growing in acidic soil
Abstract
Keywords
Full Text:
PDFReferences
Adamczyk-Szabela, D., Markiewicz, J., & Wolf, W. M. (2015). Heavy Metal Uptake by Herbs. IV. Influence of Soil pH on the Content of Heavy Metals in Valeriana officinalis L. Water, Air, & Soil Pollution, 226(4), 106. https://doi.org/10.1007/s11270-015-2360-3
Adeleke, R., Nwangburuka, C., & Oboirien, B. (2017). Origins, roles and fate of organic acids in soils: A review. South African Journal of Botany, 108, 393-406. https://doi.org/10.1016/j.sajb.2016.09.002
Agnello, A. C., Huguenot, D., Van Hullebusch, E. D., & Esposito, G. (2014). Enhanced Phytoremediation: A Review of Low Molecular Weight Organic Acids and Surfactants Used as Amendments. Critical Reviews in Environmental Science and Technology, 44(22), 2531-2576. https://doi.org/10.1080/10643389.2013.829764
Aguilera, J. G., Teodoro, P. E., da Silva Junior, J. P., Pereira, J. F., Zuffo, A. M., & Consoli, L. (2019). Selection of Aluminum-Resistant Wheat Genotypes Using Multienvironment and Multivariate Indices. Agronomy Journal, 111(6), 2804-2810. https://doi.org/10.2134/agronj2019.06.0470
Al-Huqail, A. A., Al-Rashed, S. A., Ibrahim, M. M., El-Gaaly, G. A., & Qureshi, M. I. (2017). Arsenic induced eco-physiological changes in Chickpea (Cicer arietinum) and protection by gypsum, a source of sulphur and calcium. Scientia Horticulturae, 217, 226-233. https://doi.org/https://doi.org/10.1016/j.scienta.2017.02.007
Anoop, V. M., Basu, U., McCammon, M. T., McAlister-Henn, L., & Taylor, G. J. (2003). Modulation of citrate metabolism alters aluminum tolerance in yeast and transgenic canola overexpressing a mitochondrial citrate synthase. Plant physiology, 132(4), 2205-2217. https://doi.org/10.1104/pp.103.023903
Aoyama, T., Kobayashi, T., Takahashi, M., Nagasaka, S., Usuda, K., Kakei, Y., Ishimaru, Y., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). OsYSL18 is a rice iron(III)-deoxymugineic acid transporter specifically expressed in reproductive organs and phloem of lamina joints. Plant Mol Biol, 70(6), 681-692. https://doi.org/10.1007/s11103-009-9500-3
Arunakumara, K. K. I. U., Walpola, B. C., & Yoon, M.-H. (2013). Aluminum toxicity and tolerance mechanism in cereals and legumes — A review. Journal of the Korean Society for Applied Biological Chemistry, 56(1), 1-9. https://doi.org/10.1007/s13765-012-2314-z
Aung, M. S., & Masuda, H. (2020). How Does Rice Defend Against Excess Iron?: Physiological and Molecular Mechanisms [Mini Review]. Frontiers in Plant Science, 11(1102). https://doi.org/10.3389/fpls.2020.01102
Bashir, K., Hanada, K., Shimizu, M., Seki, M., Nakanishi, H., & Nishizawa, N. K. (2014). Transcriptomic analysis of rice in response to iron deficiency and excess. Rice, 7(1), 18. https://doi.org/10.1186/s12284-014-0018-1
Blake, L., & Goulding, K. W. T. (2002). Effects of atmospheric deposition, soil pH and acidification on heavy metal contents in soils and vegetation of semi-natural ecosystems at Rothamsted Experimental Station, UK. Plant and Soil, 240(2), 235-251. https://doi.org/10.1023/A:1015731530498
Bojórquez-Quintal, E., Escalante-Magaña, C., Echevarría-Machado, I., & Martínez-Estévez, M. (2017). Aluminum, a Friend or Foe of Higher Plants in Acid Soils [Review]. Frontiers in Plant Science, 8(1767). https://doi.org/10.3389/fpls.2017.01767
Bonneau, J., Baumann, U., Beasley, J., Li, Y., & Johnson, A. A. (2016). Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat. Plant Biotechnol J, 14(12), 2228-2239. https://doi.org/10.1111/pbi.12577
Chen, L., Liu, Y., Liu, H., Kang, L., Geng, J., Gai, Y., Ding, Y., Sun, H., & Li, Y. (2015). Identification and expression analysis of MATE genes involved in flavonoid transport in blueberry plants. PLoS One, 10(3), e0118578. https://doi.org/10.1371/journal.pone.0118578
Chibuike, G. U., & Obiora, S. C. (2014). Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Applied and Environmental Soil Science, 2014, 752708. https://doi.org/10.1155/2014/752708
Connorton, J. M., Balk, J., & Rodríguez-Celma, J. (2017). Iron homeostasis in plants - a brief overview. Metallomics : integrated biometal science, 9(7), 813-823. https://doi.org/10.1039/c7mt00136c
Conte, S. S., & Walker, E. L. (2011). Transporters contributing to iron trafficking in plants. Mol Plant, 4(3), 464-476. https://doi.org/10.1093/mp/ssr015
Delhaize, E., Ryan, P. R., Hebb, D. M., Yamamoto, Y., Sasaki, T., & Matsumoto, H. (2004). Engineering high-level aluminum tolerance in barley with the ALMT1 gene. Proceedings of the National Academy of Sciences of the United States of America, 101(42), 15249-15254. https://doi.org/10.1073/pnas.0406258101
Dey, S., Regon, P., Kar, S., & Panda, S. K. (2020). Chelators of iron and their role in plant’s iron management. Physiology and Molecular Biology of Plants, 26(8), 1541-1549. https://doi.org/10.1007/s12298-020-00841-y
Dufey, I., Hiel, M.-P., Hakizimana, P., Draye, X., Lutts, S., Koné, B., Dramé, K. N., Konaté, K. A., Sie, M., & Bertin, P. (2012). Multienvironment Quantitative Trait Loci Mapping and Consistency across Environments of Resistance Mechanisms to Ferrous Iron Toxicity in Rice. Crop Science, 52(2), 539-550. https://doi.org/https://doi.org/10.2135/cropsci2009.09.0544
Durrett, T. P., Gassmann, W., & Rogers, E. E. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant physiology, 144(1), 197-205. https://doi.org/10.1104/pp.107.097162
Eekhout, T., Larsen, P., & De Veylder, L. (2017). Modification of DNA Checkpoints to Confer Aluminum Tolerance. Trends in Plant Science, 22(2), 102-105. https://doi.org/https://doi.org/10.1016/j.tplants.2016.12.003
Fageria, N. K., Santos, A. B., Barbosa Filho, M. P., & Guimarães, C. M. (2008). Iron Toxicity in Lowland Rice. Journal of Plant Nutrition, 31(9), 1676-1697. https://doi.org/10.1080/01904160802244902
Famoso, A. N., Clark, R. T., Shaff, J. E., Craft, E., McCouch, S. R., & Kochian, L. V. (2010). Development of a Novel Aluminum Tolerance Phenotyping Platform Used for Comparisons of Cereal Aluminum Tolerance and Investigations into Rice Aluminum Tolerance Mechanisms Plant physiology, 153(4), 1678-1691. https://doi.org/10.1104/pp.110.156794
Hall, J. L. (2002). Cellular mechanisms for heavy metal detoxification and tolerance. Journal of Experimental Botany, 53(366), 1-11. https://doi.org/10.1093/jexbot/53.366.1
Hell, R., & Stephan, U. W. (2003). Iron uptake, trafficking and homeostasis in plants. Planta, 216(4), 541-551. https://doi.org/10.1007/s00425-002-0920-4
Huang, C. F., Yamaji, N., Mitani, N., Yano, M., Nagamura, Y., & Ma, J. F. (2009). A bacterial-type ABC transporter is involved in aluminum tolerance in rice. The Plant cell, 21(2), 655-667. https://doi.org/10.1105/tpc.108.064543
Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., Nakazono, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2009). Rice OsYSL15 is an iron-regulated iron(III)-deoxymugineic acid transporter expressed in the roots and is essential for iron uptake in early growth of the seedlings. J Biol Chem, 284(6), 3470-3479. https://doi.org/10.1074/jbc.M806042200
Johnson, J. F., Vance, C. P., & Allan, D. L. (1996). Phosphorus Deficiency in Lupinus albus (Altered Lateral Root Development and Enhanced Expression of Phosphoenolpyruvate Carboxylase). Plant physiology, 112(1), 31-41. https://doi.org/10.1104/pp.112.1.31
Khalid, S., Shahid, M., Niazi, N. K., Rafiq, M., Bakhat, H. F., Imran, M., Abbas, T., Bibi, I., & Dumat, C. (2017). Arsenic behaviour in soil-plant system: Biogeochemical reactions and chemical speciation influences. In Enhancing cleanup of environmental pollutants (pp. 97-140). Springer. https://doi.org/10.1007/978-3-319-55423-5_4
Kobayashi, T., & Nishizawa, N. K. (2012). Iron Uptake, Translocation, and Regulation in Higher Plants. Annual Review of Plant Biology, 63(1), 131-152. https://doi.org/10.1146/annurev-arplant-042811-105522
Kochian, L. V., Hoekenga, O. A., & Piñeros, M. A. (2004). HOW DO CROP PLANTS TOLERATE ACID SOILS? MECHANISMS OF ALUMINUM TOLERANCE AND PHOSPHOROUS EFFICIENCY. Annual Review of Plant Biology, 55(1), 459-493. https://doi.org/10.1146/annurev.arplant.55.031903.141655
Kochian, L. V., Piñeros, M. A., Liu, J., & Magalhaes, J. V. (2015). Plant Adaptation to Acid Soils: The Molecular Basis for Crop Aluminum Resistance. Annual Review of Plant Biology, 66(1), 571-598. https://doi.org/10.1146/annurev-arplant-043014-114822
Larsen, P. B., Geisler, M. J., Jones, C. A., Williams, K. M., & Cancel, J. D. (2005). ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance in Arabidopsis. Plant J, 41(3), 353-363. https://doi.org/10.1111/j.1365-313X.2004.02306.x
Li, G., Kronzucker, H. J., & Shi, W. (2016). Root developmental adaptation to Fe toxicity: Mechanisms and management. Plant Signaling & Behavior, 11(1), e1117722. https://doi.org/10.1080/15592324.2015.1117722
Li, J.-Y., Liu, J., Dong, D., Jia, X., McCouch, S. R., & Kochian, L. V. (2014). Natural variation underlies alterations in Nramp aluminum transporter (<em>NRAT1</em>) expression and function that play a key role in rice aluminum tolerance. Proceedings of the National Academy of Sciences, 111(17), 6503. https://doi.org/10.1073/pnas.1318975111
Likar, M., Vogel-Mikuš, K., Potisek, M., Hančević, K., Radić, T., Nečemer, M., & Regvar, M. (2015). Importance of soil and vineyard management in the determination of grapevine mineral composition. Science of The Total Environment, 505, 724-731. https://doi.org/10.1016/j.scitotenv.2014.10.057
López-Bucio, J., Nieto-Jacobo, M. a. F., Ramı́rez-Rodrı́guez, V., & Herrera-Estrella, L. (2000). Organic acid metabolism in plants: from adaptive physiology to transgenic varieties for cultivation in extreme soils. Plant Science, 160(1), 1-13. https://doi.org/10.1016/S0168-9452(00)00347-2
Montiel-Rozas, M. M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273-281. https://doi.org/10.1016/j.envpol.2016.05.080
Muller, N. C., & Nowack, B. (2010). Nano zero valent iron – THE solution for water and soil remediation? Observatory NANO Focus Report, Netherlands. https://www.yumpu.com/en/document/read/6104945/nano-zero-valent-iron-the-solution-for-water-and-soil-remediation
Neina, D. (2019). The Role of Soil pH in Plant Nutrition and Soil Remediation. Applied and Environmental Soil Science, 2019, 5794869. https://doi.org/10.1155/2019/5794869
Nozoye, T., von Wirén, N., Sato, Y., Higashiyama, T., Nakanishi, H., & Nishizawa, N. K. (2019). Characterization of the Nicotianamine Exporter ENA1 in Rice [Original Research]. Frontiers in Plant Science, 10(502). https://doi.org/10.3389/fpls.2019.00502
Ovečka, M., & Takáč, T. (2014). Managing heavy metal toxicity stress in plants: Biological and biotechnological tools. Biotechnology Advances, 32(1), 73-86. https://doi.org/10.1016/j.biotechadv.2013.11.011
Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Rev Environ Contam Toxicol, 213, 113-136. https://doi.org/10.1007/978-1-4419-9860-6_4
Rudrappa, T., Czymmek, K. J., Paré, P. W., & Bais, H. P. (2008). Root-Secreted Malic Acid Recruits Beneficial Soil Bacteria Plant physiology, 148(3), 1547-1556. https://doi.org/10.1104/pp.108.127613
Sahrawat, K. L. (2005). Iron Toxicity in Wetland Rice and the Role of Other Nutrients. Journal of Plant Nutrition, 27(8), 1471-1504. https://doi.org/10.1081/PLN-200025869
Santos, A. L. d., Chaves-Silva, S., Yang, L., Maia, L. G. S., Chalfun-Júnior, A., Sinharoy, S., Zhao, J., & Benedito, V. A. (2017). Global analysis of the MATE gene family of metabolite transporters in tomato. BMC Plant Biology, 17(1), 185. https://doi.org/10.1186/s12870-017-1115-2
Sasaki, T., Yamamoto, Y., Ezaki, B., Katsuhara, M., Ahn, S. J., Ryan, P. R., Delhaize, E., & Matsumoto, H. (2004). A wheat gene encoding an aluminum-activated malate transporter. Plant J, 37(5), 645-653. https://doi.org/10.1111/j.1365-313x.2003.01991.x
Sharma, T., Dreyer, I., Kochian, L., & Piñeros, M. A. (2016). The ALMT Family of Organic Acid Transporters in Plants and Their Involvement in Detoxification and Nutrient Security [Review]. Frontiers in Plant Science, 7(1488). https://doi.org/10.3389/fpls.2016.01488
Singh, P. K., Indoliya, Y., Chauhan, A. S., Singh, S. P., Singh, A. P., Dwivedi, S., Tripathi, R. D., & Chakrabarty, D. (2017). Nitric oxide mediated transcriptional modulation enhances plant adaptive responses to arsenic stress. Scientific Reports, 7(1), 3592. https://doi.org/10.1038/s41598-017-03923-2
Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy Metal Tolerance in Plants: Role of Transcriptomics, Proteomics, Metabolomics, and Ionomics [Review]. Frontiers in Plant Science, 6(1143). https://doi.org/10.3389/fpls.2015.01143
Srivastava, S., Suprasanna, P., & D’Souza, S. F. (2012). Mechanisms of Arsenic Tolerance and Detoxification in Plants and their Application in Transgenic Technology: A Critical Appraisal. International Journal of Phytoremediation, 14(5), 506-517. https://doi.org/10.1080/15226514.2011.604690
Wan, J. L., Zhai, H. Q., & Wan, J. M. (2005). Mapping of QTLS for ferrous iron toxicity tolerance in rice (Oryza sativa L.). Yi Chuan Xue Bao, 32(11), 1156-1166.
Wu, L.-B., Shhadi, M. Y., Gregorio, G., Matthus, E., Becker, M., & Frei, M. (2014). Genetic and physiological analysis of tolerance to acute iron toxicity in rice. Rice (New York, N.Y.), 7(1), 8-8. https://doi.org/10.1186/s12284-014-0008-3
Wu, L., Kobayashi, Y., Wasaki, J., & Koyama, H. (2018). Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Science and Plant Nutrition, 64(6), 697-704. https://doi.org/10.1080/00380768.2018.1537093
Xu, X. Y., McGrath, S. P., & Zhao, F. J. (2007). Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol, 176(3), 590-599. https://doi.org/10.1111/j.1469-8137.2007.02195.x
Yang, Z. B., You, J. F., Xu, M. Y., & Yang, Z. M. (2009). Interaction between aluminum toxicity and manganese toxicity in soybean (Glycine max). Plant and Soil, 319(1), 277-289. https://doi.org/10.1007/s11104-008-9869-9
Zhang, X., Zhang, D., Sun, W., & Wang, T. (2019). The Adaptive Mechanism of Plants to Iron Deficiency via Iron Uptake, Transport, and Homeostasis. International journal of molecular sciences, 20(10), 2424. https://doi.org/10.3390/ijms20102424
Zheng, L., Fujii, M., Yamaji, N., Sasaki, A., Yamane, M., Sakurai, I., Sato, K., & Ma, J. F. (2011). Isolation and Characterization of a Barley Yellow Stripe-Like Gene, HvYSL5. Plant and Cell Physiology, 52(5), 765-774. https://doi.org/10.1093/pcp/pcr009
Refbacks
- There are currently no refbacks.