Classification of potential landslides using the Shuttle Radar Topography Mission imagery in the Tulis Watershed, Indonesia

Beny Harjadi, Susi Abdiyani, Inkorena G.S. Sukartono, Etty Hesthiati, Pakhriazad Hassan Zaki, Mohd Hasmadi Ismail

Abstract

Tulis is one of the watersheds in the Mrica Reservoir Catchment Area in Indonesia. The Tulis Watershed has an area of 12,750 ha, which is dominated by hilly areas with areas below alluvial-colluvial. This study aimed to map the potential distribution of the landslides in the Tulis Watershed. As the Tulis Watershed has the potential for landslides, this study was conducted by using Shuttle Radar Topography Mission (SRTM) imagery year 2016. This study considered five aspects that affect landslides, namely: geological type, soil regolith depth, fault, slope, and soil texture. Areas in the Tulis Watershed were classified into five levels of landslide potential The following landslide classes and the area they cover were predicted after applying the formula: very low (0%), low (48%, 6,126 ha), moderate (51%, 6,548 ha), high (0.5%, 63 ha), and very high (0.1%, 13 ha). From the results of the level of potential landslides, several prevention and mitigation measures are recommended according to the level. For shallow landslide levels, it is recommended that relocation centers should be set up. In contrast, for those areas with very high landslide potential, it is necessary to mitigate and install Early Warning System (EWS) tools and prepare the community for adaptation.

Keywords

Adaptation; Landslide; Mitigation; SRTM; Tulis Watershed

Full Text:

PDF

References

Balogun, A.-L., Marks, D., Sharma, R., Shekhar, H., Balmes, C., Maheng, D., Arshad, A., & Salehi, P. (2020, 2020/02/01/). Assessing the Potentials of Digitalization as a Tool for Climate Change Adaptation and Sustainable Development in Urban Centres. Sustainable Cities and Society, 53, 101888. https://doi.org/10.1016/j.scs.2019.101888

Bhermana, A., & Susilawati, S. (2019, 2019-06-30). Environmentally Sound Spatial Management Using Conservation and Land Evaluation Approach at Sloping Lands in Humid Tropic (A case study of Antang Kalang sub-district, Central Kalimantan, Indonesia) [Land-use; Planning; Management; Land suitability; Conservation]. 2019, 16(1), 14. https://doi.org/10.20961/stjssa.v16i1.24004

Booth, A. M., Roering, J. J., & Perron, J. T. (2009, 2009/08/15/). Automated landslide mapping using spectral analysis and high-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon. Geomorphology, 109(3), 132-147. https://doi.org/10.1016/j.geomorph.2009.02.027

Cahyono, B., Adi, A., Nugroho, P., & Sumarno, S. (2015). Penentuan Kecepatan Sedimentasi Waduk Berdasarkan Data Pengukuran Batimetri dan Analisa Kandungan Sedimen Dalam Air. Conference Proceedings. Forum Ilmiah Tahunan, Ikatan Surveyor Indonesia, 2(1), 13-21.

Darsono, D., Nurlaksito, B., & Legowo, B. (2012). Identifikasi Bidang Gelincir Pemicu Bencana Tanah Longsor Dengan Metode Resistivitas 2 Dimensi Di Desa Pablengan Kecamatan Matesih Kabupaten Karanganyar. Indonesian Journal of Applied Physics, 2(2), 51-60. https://jurnal.uns.ac.id/ijap/article/view/1292

Demattê, J. A. M., & da Silva Terra, F. (2014). Spectral pedology: A new perspective on evaluation of soils along pedogenetic alterations. Geoderma, 217-218, 190-200. https://doi.org/10.1016/j.geoderma.2013.11.012

Gallen, S. F., Clark, M. K., & Godt, J. W. (2015). Coseismic landslides reveal near-surface rock strength in a highrelief, tectonically active setting. Geology, 43(1), 11-14. https://doi.org/10.1130/G36080.1

Harjadi, B. (2015). Survei ISDL (Inventarisasi Sumber Daya Lahan). Balai Penelitian Teknologi Kehutanan Pengelolaan Daerah Aliran Sungai, Badan Penelitian, Pengembangan, dan Inovasi Kehutanan, Kementerian Lingkungan Hidup Kehutanan.

Harjadi, B., & Paimin, P. (2013). Teknik Identifikasi Daerah yang Berpotensi Rawan Longsor pada Satu Wilayah Daerah Aliran Sungai. Jurnal Penelitian Hutan dan Konservasi Alam, 10(2), 12. https://doi.org/10.20886/jphka.2013.10.2.163-174

Harjadi, B., & Susanti, P. D. (2019). Perhitungan Erosi Kualitatif Dengan Analisis Citra Satelit Di Sub DAS Tulis, Daerah Tangkapan Waduk MRICA. EnviroScienteae, 15(1), 10-23. https://doi.org/10.20527/es.v15i1.6318

Harp, E. L., Keefer, D. K., Sato, H. P., & Yagi, H. (2011, 2011/09/12/). Landslide inventories: The essential part of seismic landslide hazard analyses. Engineering Geology, 122(1), 9-21. https://doi.org/10.1016/j.enggeo.2010.06.013

Hartono, R., & Nasikh, N. (2017, 2017-12-27). Applying Remote Sensing Technology and Geographic Information System in Batu, East Java [landsat image; land units; landslide]. 2017, 49(2), 7. https://doi.org/10.22146/ijg.12842

Hatmoko, W., Rauf, A., Juana, B. P., & Umum, K. P. (2013). Tinggi Muka Air Waduk sebagai Indikator Kekeringan Studi Kasus pada Waduk Kedungombo dan Waduk Cacaban. Seminar Bendungan Besar,

Hua-xi, G., & Kun-long, Y. (2014). Study on spatial prediction and time forecast of landslide. Natural Hazards, 70(3), 1735-1748. https://doi.org/10.1007/s11069-011-9756-1

ILWIS. (2018). User's Guide: ILWIS Documentation version 3. University of Twente. https://www.itc.nl/ilwis/users-guide/

Maulana, E., Wulan, T. R., Wahyunungsih, D. S., Ibrahim, F., Putra, A. S., & Putra, M. D. (2017, 2017-12-27). Geoecology Identification Using Landsat 8 for Spatial Planning in North Sulawesi Coastal [Geoecology;Landsat; Coastal; North Sulawesi]. 2017, 49(2), 6. https://doi.org/10.22146/ijg.13189

Nearing, M. A., Xie, Y., Liu, B., & Ye, Y. (2017). Natural and anthropogenic rates of soil erosion. International Soil and Water Conservation Research, 5(2), 77-84. https://doi.org/77-8477-84

Piñeiro, V., Arias, J., Dürr, J., Elverdin, P., Ibáñez, A. M., Kinengyere, A., Opazo, C. M., Owoo, N., Page, J. R., Prager, S. D., & Torero, M. (2020, 2020/10/01). A scoping review on incentives for adoption of sustainable agricultural practices and their outcomes. Nature Sustainability, 3(10), 809-820. https://doi.org/10.1038/s41893-020-00617-y

Pradhan, B. (2010, 2010/06/01). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38(2), 301-320. https://doi.org/10.1007/s12524-010-0020-z

Pradhan, B., Sezer, E. A., Gokceoglu, C., & Buchroithner, M. F. (2010). Landslide susceptibility mapping by neuro-fuzzy approach in a landslide-prone area (Cameron Highlands, Malaysia). IEEE Transactions on Geoscience and Remote Sensing, 48(12), 4164-4177. https://doi.org/10.1109/TGRS.2010.2050328

Putra, E. H. (2014). Identifikasi daerah rawan longsor menggunakan metode smorph-slope morphology di Kota Manado. Jurnal Wasian, 1(1), 1-7. https://doi.org/10.20886/jwas.v1i1.849

Putranto, T. T., & Susanto, N. (2017, 2017-12-27). Pilot Implementation of Human-Centered Model in Disaster Management: A Report From Landslides Area in Semarang City [Human-Centered Disaster Management; Landslide Areas; Semarang City; Implementation]. 2017, 49(2), 10. https://doi.org/10.22146/ijg.15943

Rodriguez, E., Morris, C. S., & Belz, J. E. (2006). A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249-260. https://doi.org/10.14358/PERS.72.3.249

Ruffell, A. (2010, 2010/10/10/). Forensic pedology, forensic geology, forensic geoscience, geoforensics and soil forensics. Forensic Science International, 202(1), 9-12. https://doi.org/https://doi.org/10.1016/j.forsciint.2010.03.044

Sallata, M. K. (2016, 2016-08-31). Farmer’s particiption on application of land rehabilitation and soil conservation engineering on micro watershed [Famers Participation; land rehabilitation; soil conservation; micro watershed]. 2016, 5(2), 14. https://doi.org/10.18330/jwallacea.2016.vol5iss2pp171-184

Sugianti, K., Mulyadi, D., & Sarah, D. (2014, 2014-11-19). Klasifikasi tingkat kerentanan gerakan tanah daerah sumedang selatan menggunakan metode Storie [landslide, South Sumedang, susceptibility, Storie method.]. 2014, 24(2), 12. https://doi.org/10.14203/risetgeotam2014.v24.86

Supangat, A. B., Sudira, P., Supriyo, H., & Poedjirahajoe, E. (2018). Simulasi Model Dinamik Pengaruh Legume Cover Crops (Lcc) Terhadap Limpasan Dan Sedimen Di Lahan Hutan Tanaman (Dynamic Model Simulation of the Effects of Legume Cover Crops (Lcc) on Runoff and Sediment in Plantation Forest Land). Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research), 2(1), 17-34. https://doi.org/10.20886/jppdas.2018.2.1.17-34

Susanti, P. D., Miardini, A., & Harjadi, B. (2017). Analisis kerentanan tanah longsor sebagai dasar mitigasi di kabupaten banjarnegara (vulnerability analysis as a basic for landslide mitigation in banjarnegara regency). Jurnal Penelitian Pengelolaan Daerah Aliran Sungai (Journal of Watershed Management Research), 1(1), 49-59. https://doi.org/10.20886/jppdas.2017.1.1.49-59

Tingsanchali, T. (2012, 2012/01/01/). Urban flood disaster management. Procedia Engineering, 32, 25-37. https://doi.org/10.1016/j.proeng.2012.01.1233

Tofani, V., Raspini, F., Catani, F., & Casagli, N. (2014, 2014//). Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring. Landslide Science for a Safer Geoenvironment, Cham.

Wahyuningrum, N., & Supangat, A. B. (2016). Identifikasi Tingkat Bahaya Longsor dengan Skala Data Berbeda untuk Perencanaan DAS Mikro Naruwan, Sub DAS Keduang. Majalah Ilmiah Globe, 18(2), 53-60.

Widiatiningsih, A., Mujiyo, M., & Suntoro, S. (2018, 2018-07-02). Study of Soil Degradation Status at Jatipurno District, Keduang Sub-Watersheds, Wonogiri Regency, Central Java [soil degradation; soil permeability; environmental conservation]. 2018, 15(1), 14. https://doi.org/10.15608/stjssa.v15i1.21616

Yan, F., Zhang, S., Liu, X., Chen, D., Chen, J., Bu, K., Yang, J., & Chang, L. (2016). The Effects of Spatiotemporal Changes in Land Degradation on Ecosystem Services Values in Sanjiang Plain, China. Remote Sensing, 8(11). https://doi.org/10.3390/rs8110917

Refbacks

  • There are currently no refbacks.