Aggregate stability of Alfisols root zone upon turfgrass treatment
Abstract
Soil degradation mostly occurs on land where a lack of surface coverage results in soil-aggregate destruction due to heavy rainfall. Turfgrass is an ornamental plant and covers the soil surface and, thus, potentially improves soil-aggregate stability. This study determined the potential of some summer grasses to improve soil-aggregate stability and was a pilot experiment using six turfgrass species: Paspalum vaginatum; middle-leaf Zoysia sp.; Cynodon dactylon; coarse-leaf Zoysia sp.; Axonopus compressus; Zoysia matrella. Turfgrasses were planted using stolons in a 0.6 m2 plot unit with 5 cm x 5 cm space. Lawn maintenance included irrigation, fertilizing, and weeding. Soil characteristics were observed six months after planting and showed that turfgrass increased the soil-aggregate index from 42.3% to 83.0% in control, and carbon particles measuring 6.4 μm from 28.3% to 63.0%.
Keywords
Full Text:
PDFReferences
Abiven, S., Menasseri, S., & Chenu, C. (2009). The effects of organic inputs over time on soil aggregate stability—a literature analysis. Soil Biology and Biochemistry, 41(1), 1–12. https://doi.org/10.5167/uzh-10151
Albiach, R., Canet, R., Pomares, F., & Ingelmo, F. (2001). Organic matter components and aggregate stability after the application of different amendments to a horticultural soil. Bioresource Technology, 76(2), 125–129. https://doi.org/10.1016/S0960-8524(00)00090-0
Amézketa, E. (1999). Soil aggregate stability: A review. Journal of Sustainable Agriculture, 14(2–3), 83–151. https://doi.org/10.1300/J064v14n02_08
An, S. S., Darboux, F., & Cheng, M. (2013). Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China). Geoderma, 209–210, 75–85. https://doi.org/10.1016/j.geoderma.2013.05.020
Arifin, M. (2010). Kajian Sifat Fisik Tanah dan berbagai Penggunaan Lahan dalam Hubungannya dengan Pendugaan Erosi Tanah. Jurnal Pertanian Maperta, 12(2), 111–115.
Baldock, J. A. (2002). Interactions of Organic Materials and Microorganisms with Minerals in the Stabilization of Structure. In P. M. Huang, J.-M. Bollag, & N. Senesi (Eds.), Interactions between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem (pp. 85–131). New York: John Wiley & Sons, Ltd.
Brodowski, S., John, B., Flessa, H., & Amelung, W. (2006). Aggregate-occluded black carbon in soil. European Journal of Soil Science, 57(4), 539–546. https://doi.org/10.1111/j.1365-2389.2006.00807.x
Brosnan, J. T., & Deputy, J. (2008). Zoysiagrass. United States.
Castro Filho, C., Lourenço, A., Guimarães, M. D. F., & Fonseca, I. C. B. (2002). Aggregate stability under different soil management systems in a red latosol in the state of Parana, Brazil. Soil and Tillage Research, 65(1), 45–51. https://doi.org/10.1016/S0167-1987(01)00275-6
Dougherty, R. F., Quinn, L. D., Endres, A. B., Voigt, T. B., & Barney, J. N. (2014). Natural History Survey of the Ornamental Grass Miscanthus sinensis in the Introduced Range . Invasive Plant Science and Management, 7(1), 113–120. https://doi.org/10.1614/ipsm-d-13-00037.1
Fokom, R., Adamou, S., Teugwa, M. C., Begoude Boyogueno, A. D., Nana, W. L., Ngonkeu, M. E. L., … Amvam Zollo, P. H. (2012). Glomalin related soil protein, carbon, nitrogen, and soil aggregate stability as affected by land-use variation in the humid forest zone of south Cameroon. Soil and Tillage Research, 120, 69–75. https://doi.org/10.1016/j.still.2011.11.004
Hartati, W. (2008). Evaluasi Distribusi Hara Tanah dan Tegakan Mangium, Sengon Dan Leda Pada Akhir Daur Untuk Kelestarian Produksi Hutan Tanaman Di Umr Gowa PT Inhutani I Unit III Makassar. Jurnal Hutan Dan Masyarakat, 3(2), 199–219.
Ibeh, B. O., Maxwell, E., & Bitrus, H. J. (2013). Phytochemical Compositions and In vitro Antioxidant Capacity of Methanolic Leaf Extract of Axonopus Compressus (P. Beauv.). European Journal of Medicinal Plants, 3(2), 254–265.
Idowu, O. J. (2003). Relationships between aggregate stability and selected soil properties in humid tropical environment. Communications in Soil Science and Plant Analysis, 34(5–6), 695–708. https://doi.org/10.1081/CSS-120018969
Isnawati, N., & Listyarini, E. (2018). Hubungan Antara Kemantapan Agregat Dengan Konduktifitas Hidraulik Jenuh Tanah Pada Berbagai Penggunaan Lahan Di Desa Tawangsari Kecamatan Pujon , Malang. Jurnal Tanah Dan Sumberdaya Lahan, 5(1), 785–791.
Kadlec, V., Holubík, O., Procházková, E., Urbanová, J., & Tippl, M. (2012). Soil organic carbon dynamics and its influence on the soil erodibility factor. Soil and Water Research, 7(3), 97–108. https://doi.org/10.17221/3/2012-SWR
Kalhoro, S. A., Xu, X., Chen, W., Hua, R., Raza, S., & Ding, K. (2017). Effects of different land-use systems on soil aggregates: A case study of the Loess Plateau (Northern China). Sustainability (Switzerland), 9(8), 1–16. https://doi.org/10.3390/su9081349
Li, Y., Jiao, J., Wang, Z., Cao, B., Wei, Y., & Hu, S. (2016). Effects of revegetation on soil organic carbon storage and Erosion-Induced carbon loss under extreme rainstorms in the hill and gully region of the loess plateau. International Journal of Environmental Research and Public Health, 13(5), 456. https://doi.org/10.3390/ijerph13050456
Li, Y. Y., Shao, M. A., Zheng, J. Y., & Zhang, X. C. (2005). Spatial-temporal changes of soil organic carbon during vegetation recovery at Ziwuling, China. Pedosphere, 15(5), 601--610.
Liu, Z., Liu, G., Fu, B., & Zheng, X. (2008). Relationship between plant species diversity and soil microbial functional diversity along a longitudinal gradient in temperate grasslands of Hulunbeir, Inner Mongolia, China. Ecological Research, 23(3), 511–518. https://doi.org/10.1007/s11284-007-0405-9
Lonard, R. I., Judd, F. W., & Stalter, R. (2015). Biological Flora of Coastal Dunes and Wetlands: Paspalum vaginatum Sw. Journal of Coastal Research, 31(1), 223. https://doi.org/10.2112/jcoastres-d-14-00022.1
Loveland, P., & Webb, J. (2003). Is there a critical level of organic matter in the agricultural soils of temperate regions: A review. Soil and Tillage Research, 70(1), 1–18. https://doi.org/10.1016/S0167-1987(02)00139-3
Lovelock, C. E., Wright, S. F., Clark, D. A., & Ruess, R. W. (2004). Soil stocks of glomalin produced by arbuscular mycorrhizal fungi across a tropical rain forest landscape. Journal of Ecology, 92(2), 278–287. https://doi.org/10.1111/j.0022-0477.2004.00855.x
Monteiro, J. A. (2017). Ecosystem services from turfgrass landscapes. Urban Forestry and Urban Greening, 26, 151–157. https://doi.org/10.1016/j.ufug.2017.04.001
Musfal, M. (2010). Potensi Cendawan Mikoriza Arbuskula untuk Meningkatkan Hasil Tanaman Jagung. Jurnal Penelitian Dan Pengembangan Pertanian, 29(4), 154–158. https://doi.org/10.21082/jp3.v29n4.2010.p154-158
Mustoyo, Simanjuntak, B. H., & Suprihati. (2013). PENGARUH DOSIS PUPUK KANDANG TERHADAP STABILITAS AGREGAT TANAH PADA SISTEM PERTANIAN ORGANIK. Agric, 25(1), 57. https://doi.org/10.24246/agric.2013.v25.i1.p51-57
Ojeda, G., Alcañiz, J. M., & Le Bissonnais, Y. (2008). Differences in aggregate stability due to various sewage sludge treatments on a Mediterranean calcareous soil. Agriculture, Ecosystems and Environment, 125(1–4), 48–56. https://doi.org/10.1016/j.agee.2007.11.005
Partoyo. (2005). Analisis Indeks Kualitas Tanah Pertanian Di Lahan Pasir Pantai Samas Yogyakarta . Jurnal Ilmu Pertanian, 12(2), 140–151.
Purin, S., Filho, O. K., & Stürmer, S. L. (2006). Mycorrhizae activity and diversity in conventional and organic apple orchards from Brazil. Soil Biology and Biochemistry, 38(7), 1831–1839. https://doi.org/10.1016/j.soilbio.2005.12.008
Qian, Y., & Follett, R. (2012). Carbon dynamics and sequestration in urban turfgrass ecosystems. In R. Lal & B. Augustin (Eds.), Carbon Sequestration in Urban Ecosystems (pp. 161–172). Springer Netherlands. https://doi.org/10.1007/978-94-007-2366-5_8
Qian, Y. L., Bandaranayake, W., Parton, W. J., Mecham, B., Harivandi, M. A., & Mosier, A. R. (2003). Long-Term Effects of Clipping and Nitrogen Management in Turfgrass on Soil Organic Carbon and Nitrogen Dynamics. Journal of Environmental Quality, 32(5), 1694–1700. https://doi.org/10.2134/jeq2003.1694
Refliaty, & Marpaung, E. J. (2010). Kemantapan Agregat Ultisol Pada Beberapa Penggunaan Lahan Dan Kemiringan Lereng. Jurnal Hidrolitan, 1(2), 35–42.
Rillig, M. C., Wright, S. F., & Eviner, V. T. (2002). The role of arbuscular mycorrhizal fungi and glomalin in soil aggregation: Comparing effects of five plant species. Plant and Soil, 238(2), 325–333. https://doi.org/10.1023/A:1014483303813
Sandoval, M. A., Celis, J. E., & Morales, P. (2011). Structural remediation of an alfisol by means of sewage sludge amendments in association with yellow serradela (Ornithopus compressus L.). Journal of Soil Science and Plant Nutrition, 11(1), 68–78. https://doi.org/10.4067/S0718-95162011000100006
Santoro, A. E., Boehm, A. B., & Francis, C. A. (2006). Denitrifier community composition along a nitrate and salinity gradient in a coastal aquifer. Applied and Environmental Microbiology, 72(3), 2102–2109. https://doi.org/10.1128/AEM.72.3.2102-2109.2006
Shi, W., Dell, E., Bowman, D., & Iyyemperumal, K. (2006). Soil enzyme activities and organic matter composition in a turfgrass chronosequence. Plant and Soil, 288(1–2), 285–296. https://doi.org/10.1007/s11104-006-9116-1
Shi, W., Yao, H., & Bowman, D. (2006). Soil microbial biomass, activity, and nitrogen transformations in a turfgrass chronosequence. Soil Biology and Biochemistry, 38(2), 311–319. https://doi.org/10.1016/j.soilbio.2005.05.008
Sirait, J. (2017). Dwarf Elephant Grass (Pennisetum purpureum cv. Mott) as Forage for Ruminant. WARTAZOA, 27(4), 167–176. https://doi.org/10.14334/wartazoa.v27i4.1569
Six, J., Feller, C., Denef, K., Ogle, S. M., de Moraes, J. C., & Albrecht, A. (2002). Soil organic matter, biota and aggregation in temperate and tropical soils - Effects of no-tillage. Agronomie, 22(7–8), 755–775. https://doi.org/10.1051/agro:2002043
Spohn, M., & Giani, L. (2010). Water-stable aggregates, glomalin-related soil protein, and carbohydrates in a chronosequence of sandy hydromorphic soils. Soil Biology and Biochemistry, 42(9), 1505–1511. https://doi.org/10.1016/j.soilbio.2010.05.015
Supangat, A. B., & Putra, P. B. (2010). Kajian Infiltrasi Tanah Pada Berbagai Tegakan Jati (Tectona grandis L.) di Cepu, Jawa Tengah. Jurnal Penelitian Hutan Dan Konservasi Alam, 7(2), 149–159.
Suwardji, Utomo, W. H., & Sukartono. (2012). Kemantapan Agregat Setelah Aplikasi Biochar di Tanah Lempung Berpasir Pasa Pertanaman Jagung di Lahan Kering Kabupaten Lombok Utara. Buana Sains, 12(1), 61–68.
Syamsiyah, J., Sunarminto, B., Hanudin, E., & Widada, J. (2014). Effect of Arbuscular Mycorrhizal Fungi Inoculation on Glomalin, Growth, and Rice Yield. Sains Tanah - Journal of Soil Science and Agroclimatology, 11(1), 39–44. https://doi.org/10.15608/stjssa.v11i1.214
Tessier, D., Bruand, A., Le Bissonnais, Y., & Dambrine, E. (1997). Chemical and Physical Properties of Soils in France: Spatial Context and Evolution. Geologica Carpathica Clays, 6(2), 121–131.
Trappe, J. M. (2015). Evaluating Soil Carbon Sequestration Potential for Turfgrass Species Grown in the Transition Zone. Theses and Dissertations Available from ProQuest. Purdue University, West Lafayette.
Wilson, G. W. T., Rice, C. W., Rillig, M. C., Springer, A., & Hartnett, D. C. (2009). Soil aggregation and carbon sequestration are tightly correlated with the abundance of arbuscular mycorrhizal fungi: Results from long-term field experiments. Ecology Letters, 12(5), 452–461. https://doi.org/10.1111/j.1461-0248.2009.01303.x
Wright, S. F., Franke-Snyder, M., Morton, J. B., & Upadhyaya, A. (1996). Time-course study and partial characterization of a protein on hyphae of arbuscular mycorrhizal fungi during active colonization of roots. Plant and Soil, 181(2), 193–203. https://doi.org/10.1007/BF00012053
Zhang, X. C., & Miller, W. P. (1996). Physical and Chemical Crusting Processes Affecting Runoff and Erosion in Furrows. Soil Science Society of America Journal, 60(3), 860–865. https://doi.org/10.2136/sssaj1996.03615995006000030026x
Refbacks
- There are currently no refbacks.