Current Evidence and Future Projections: a Comparative Analysis of the Impacts of Climate Change on Critical Climate-Sensitive Areas of Papua New Guinea

Patrick S. Michael

Abstract

Climate change is a global concern arising from spatial or temporal changes in precipitation, temperature and greenhouse gases. The impacts of this on critical climate-sensitive areas are largely on land, marine resources, forestry and agriculture, and their biodiversity and ecosystems. In Papua New Guinea (PNG), the mainstay (85%) of the rural people is on land and agriculture, compared to resources obtained from the marine areas and forest. Productivity on land depends on climatic factors and a compromised climate affects land, which in turn affects forestry, agriculture and the marine environment (resources and ecosystems). Because of this, a lot of resources have been invested in climate change to understand the impacts; however, much is yet to be achieved, especially in the developing nations. In PNG, understanding the types of changes in climate that will be experienced is important to be resilient, to mitigate and to adapt. In this review, the potential impact of global climate change on climate of PNG and the impact of the new (future) climate on land, marine and forest resources and their biodiversity and ecosystems are analyzed. Moreover, the impacts on crop agriculture are discussed. Analysis of available data shows that the temporal and spatial changes in precipitation and temperature projections of the future climate are within current optimum crop production ranges, at least up to 2090. Since most staple and plantation crops in PNG are C3 plants, an increase in CO2 levels will have a fertilizing effect on productivity. The plastic effects on certain crops may benefit some farmers as temperature, precipitation and CO2 levels change.

Keywords

Agriculture; Climate change; Critical impact areas; PNG; Precipitation; Temperature

Full Text:

PDF

References

Bale, J. S., Masters, G. J., Hodkinson, I. D., Awmack, C., Bezemer, T. M., Brown, V. K., … Whittaker, J. B. (2002). Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology, 8(1), 1–6. https://doi.org/10.1046/j.1365-2486.2002.00451.x

Bird, E. C. F. (1996). Coastal Erosion and Rising Sea-Level. In J. D. Milliman & B. U. Haq (Eds.), Sea-Level Rise and Coastal Subsidence: Causes, Consequences, and Strategies (2nd ed., pp. 87–103). Dordrecht: Springer. https://doi.org/10.1007/978-94-015-8719-8_5

Boehm, R., Cash, S. B., Anderson, B. T., Ahmed, S., Griffin, T. S., Robbat, A., … Orians, C. M. (2016). Association between empirically estimated monsoon dynamics and otherweather factors and historical tea yields in China: Results from a yield response model. Climate, 4(2), 20. https://doi.org/10.3390/cli4020020

Bourke, R Michael. (1988). Taim hangre: variation in subsistence food supply in the Papua New Guinea highlands. Department of Human Geography. Australian National University. https://doi.org/10.25911/5d739086d9691

Bourke, Richard Michael. (2018). Impact of climate change on agriculture in Papua New Guinea. In A. R. Quartermain (Ed.), Climate Change: Our Environment, Livelihoods, and Sustainabilit (pp. 35–50). Papua New Guinea: University of Goroka.

Brierley, A. S., & Kingsford, M. J. (2009). Impacts of Climate Change on Marine Organisms and Ecosystems. Current Biology, 19(14), R602–R614. https://doi.org/10.1016/j.cub.2009.05.046

Brown, L. D., & Dorn, C. R. (1977). Fish, Shellfish, and Human Health. Journal of Food Protection, 40(10), 712–717. https://doi.org/10.4315/0362-028x-40.10.712

Brown, R. H. (1999). Agronomic Implications of C4 Photosynthesis. In R. F. Sage & R. K. Monson (Eds.), C4 Plant Biology (pp. 473–507). Cambridge, Massachusetts: Academic Press. https://doi.org/10.1016/B978-012614440-6/50015-X

Budiadi, & Ishii, H. T. (2010). Comparison of carbon sequestration between multiple-crop, single-crop, and monoculture agroforestry systems of Melaleuca in Java, Indonesia. Journal of Tropical Forest Science, 22(4), 378–388.

Cammell, M. E., & Knight, J. D. (1992). Effects of Climatic Change on the Population Dynamics of Crop Pests. Advances in Ecological Research, 22, 117–162. https://doi.org/10.1016/S0065-2504(08)60135-X

Canadell, J. G., & Raupach, M. R. (2008). Managing forests for climate change mitigation. Science, 320(5882), 1456–1457. https://doi.org/10.1126/science.1155458

Carroll, S. P. (2007). Natives adapting to invasive species: Ecology, genes, and the sustainability of conservation. Ecological Research, 22(6), 892–901. https://doi.org/10.1007/s11284-007-0352-5

Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B., & Thomas, C. D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–2016. https://doi.org/10.1126/science.1206432

Davies, J. M., Dunne, R. P., & Brown, B. E. (1997). Coral bleaching and elevated sea-water temperature in Milne Bay Province, Papua New Guinea, 1996. Marine and Freshwater Research, 48(6), 513–516. https://doi.org/10.1071/MF96128

Di Vita, G., Pilato, M., Pecorino, B., Brun, F., & D’Amico, M. (2017). A review of the role of vegetal ecosystems in CO2 capture. Sustainability (Switzerland), 9, 1840. https://doi.org/10.3390/su9101840

Diamond, M. L., de Wit, C. A., Molander, S., Scheringer, M., Backhaus, T., Lohmann, R., … Zetzsch, C. (2015). Exploring the planetary boundary for chemical pollution. Environment International, 78, 8–15. https://doi.org/10.1016/j.envint.2015.02.001

Dukes, J. S., & Mooney, H. A. (1999). Does global change increase the success of biological invaders? Trends in Ecology and Evolution, 14(4), 135–139. https://doi.org/10.1016/S0169-5347(98)01554-7

Frumkin, H., & Haines, A. (2019). Global Environmental Change and Noncommunicable Disease Risks. Annual Review of Public Health, 40, 261–282. https://doi.org/10.1146/annurev-publhealth-040218-043706

Gardner, A. S., Moholdt, G., Cogley, J. G., Wouters, B., Arendt, A. A., Wahr, J., … Paul, F. (2013). A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science, 340(6134), 852–857. https://doi.org/10.1126/science.1234532

Gratani, L., Pesoli, P., Crescente, M. F., Aichner, K., & Larcher, W. (2000). Photosynthesis as a temperature indicator in Quercus ilex L. Global and Planetary Change, 24(2), 153–163. https://doi.org/10.1016/S0921-8181(99)00061-2

Haberle, S. G. (2007). Prehistoric human impact on rainforest biodiversity in highland New Guinea. Philosophical Transactions of the Royal Society B: Biological Sciences, 362(1478), 219–228. https://doi.org/10.1098/rstb.2006.1981

Heino, J., Virkkala, R., & Toivonen, H. (2009). Climate change and freshwater biodiversity: Detected patterns, future trends, and adaptations in northern regions. Biological Reviews, 84(1), 39–54. https://doi.org/10.1111/j.1469-185X.2008.00060.x

Hill, N. S., Belesky, D. P., & Stringer, W. C. (1998). Encroachment of endophyte-infected on endophyte-free tall fescue. Annals of Botany, 81(4), 483–488. https://doi.org/10.1006/anbo.1998.0583

Hunnam, P. (2013). Review of The International Climate Change Adaptation Initiative Pacific Programs in Climate Science and Adaptation Planning 2008-2013: Pasific Climate Change Science Program Pacific Adaptation Strategy Assistance Program Pasific-Australia Climate Change. The International Climate Change Adaptation Initiative Pacific Programs in Climate Science and Adaptation Planning. Honiara, Solomon Islands.

Hussner, A., Van De Weyer, K., Gross, E. M., & Hilt, S. (2010). Comments on increasing number and abundance of non-indigenous aquatic macrophyte species in Germany. Weed Research, 50(6), 519–526. https://doi.org/10.1111/j.1365-3180.2010.00812.x

IPCC. (2007a). Climate Change 2007: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (M. L. Parry, O. F. Canziani, J. P. Palutikof, P. J. van der Linden, & C. E. Hanson, Eds.). Cambridge: Cambridge University Press.

IPCC. (2007b). Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. (S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, … H. L. Miller, Eds.). Cambridge, UK, and New York, USA: Cambridge University Press.

IPCC. (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (S. T.F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, … P. M. Midgley, Eds.). Cambridge, UK, and New York, USA: Cambridge University Press.

Kaluwin, C., Ashton, J., & Saulei, S. (2000). Papua New Guinea Initial national communication under the United Nations Framework Convention on Climate Change. Port Moresby.

Kapal, D. B., Taraken, I. T., & Sirabis, W. (2010). Soil fertility management options in sweet potato based cropping systems in the highlands of Papua New Guinea. In R. Gilkes & N. Prakongkep (Eds.), 19th World Congress of Soil Science, Soil Solutions for a Changing World (pp. 144–146). Brisbane, Australia: International Union of Soil Sciences.

Katsman, C. A., Sterl, A., Beersma, J. J., van den Brink, H. W., Church, J. A., Hazeleger, W., … Weisse, R. (2011). Exploring high-end scenarios for local sea level rise to develop flood protection strategies for a low-lying delta-the Netherlands as an example. Climatic Change, 109(3–4), 617–645. https://doi.org/10.1007/s10584-011-0037-5

Khan, A. E., Scheelbeek, P. F. D., Shilpi, A. B., Chan, Q., Mojumder, S. K., Rahman, A., … Vineis, P. (2014). Salinity in drinking water and the risk of (pre)eclampsia and gestational hypertension in coastal Bangladesh: A case-control study. PLoS ONE, 9(9), e108715. https://doi.org/10.1371/jouemrnal.pone.0108715

Klein, A. M., Vaissière, B. E., Cane, J. H., Steffan-Dewenter, I., Cunningham, S. A., Kremen, C., & Tscharntke, T. (2007). Importance of pollinators in changing landscapes for world crops. Proceedings of the Royal Society B: Biological Sciences, 274, 303–313. https://doi.org/10.1098/rspb.2006.3721

Knoema.com. (2018). Papua New Guinea CO2 emissions, 1970-2018 - knoema.com.

Koczberski, G., Curry, G. N., Bue, V., Germis, E., Nake, S., & Tilden, G. M. (2018). Diffusing Risk and Building Resilience through Innovation: Reciprocal Exchange Relationships, Livelihood Vulnerability and Food Security amongst Smallholder Farmers in Papua New Guinea. Human Ecology, 46(6), 801–814. https://doi.org/10.1007/s10745-018-0032-9

Kongsager, R., Napier, J., & Mertz, O. (2013). The carbon sequestration potential of tree crop plantations. Mitigation and Adaptation Strategies for Global Change, 18(8), 1197–1213. https://doi.org/10.1007/s11027-012-9417-z

Laing, D. R., Kretchmer, P. J., Zuluaga, S., & Jones, P. G. (1983). Field beans. In Potential Productivity of Field Crops Under Different Environments (pp. 227–248). Manila, Philippines: International Rice Research Institute.

Lakau, A. A. L. (1991). State acquisition of customary land for public purposes. Lae, Papua New Guinea: Dept. of Surveying and Land Studies, Papua New Guinea University of Technology.

Lawler, J. J. (2009). Climate change adaptation strategies for resource management and conservation planning. Annals of the New York Academy of Sciences, 1162, 79–98. https://doi.org/10.1111/j.1749-6632.2009.04147.x

Leakey, A. D. B. (2009). Rising atmospheric carbon dioxide concentration and the future of C 4 crops for food and fuel. Proceedings of the Royal Society B: Biological Sciences, 276(1666), 2333–2343. https://doi.org/10.1098/rspb.2008.1517

Lejeune, K. R., Griffin, J. L., Reynolds, D. B., & Saxton, A. M. (1994). Itchgrass (Rottboellia cochinchinensis) Interference in Soybean (Glycine max). Weed Technology, 8(4), 733–737. https://doi.org/10.2307/3988188

Lencse, R. J., & Griffin, J. L. (1991). Itchgrass ( Rottboellia cochinchinensis ) Interference in Sugarcane ( Saccharum sp.). Weed Technology, 5(2), 396–399. https://doi.org/10.1017/s0890037x0002830x

Lloyd, S. J., Sari Kovats, R., & Chalabi, Z. (2011). Climate change, crop yields, and undernutrition: Development of a model to quantify the impact of climate scenarios on child undernutrition. Environmental Health Perspectives, 119(12), 1817–1823. https://doi.org/10.1289/ehp.1003311

Logan, J. A., Régnière, J., & Powell, J. A. (2003). Assessing the impacts of global warming on forest pest dynamics. Frontiers in Ecology and the Environment, 1(3), 130–137. https://doi.org/10.1890/1540-9295(2003)001[0130:ATIOGW]2.0.CO;2

Lund, J. R., Zhu, T., Tanaka, S. K., & Jenkins, M. W. (2006). Water Resources Impacts. In J. B. Smith & R. Mendelsohn (Eds.), The Impact of Climate Change on Regional Systems A Comprehensive Analysis of California (p. 165 ˗ 187). Massachusetts, USA: Edward Elgar Publishing. https://doi.org/10.4337/9781847203120

Makino, A., & Tadahiko, M. (1999). Photosynthesis and plant growth at elevated levels of CO2. Plant and Cell Physiology, 40(10), 999–1006. https://doi.org/10.1093/oxfordjournals.pcp.a029493

Masters, G., & Norgrove, L. (2010). Climate Change and Invasive Alien Species (1 No. 1). CABI Working Paper 1. Oxfordshire.

Mawdsley, J. R., O’Malley, R., & Ojima, D. S. (2009). A review of climate-change adaptation strategies for wildlife management and biodiversity conservation. Conservation Biology, 23(8), 1080–1089. https://doi.org/10.1111/j.1523-1739.2009.01264.x

Mcalpine, J., Keig, G., & Short, K. (1975). Climatic tables for Papua New Guinea. Technical Paper No. 37. Canberra, Australia.

McGranahan, G., Balk, D., & Anderson, B. (2007). The rising tide: Assessing the risks of climate change and human settlements in low elevation coastal zones. Environment and Urbanization, 19(1), 17–37. https://doi.org/10.1177/0956247807076960

McMichael, A. J. (2013). Globalization, climate change, and human health. New England Journal of Medicine, 368, 1335–1343. https://doi.org/10.1056/NEJMra1109341

Merrifield, M. A., Merrifield, S. T., & Mitchum, G. T. (2009). An anomalous recent acceleration of global sea level rise. Journal of Climate, 22, 5772–5781. https://doi.org/10.1175/2009JCLI2985.1

Mittler, R. (2006). Abiotic stress, the field environment and stress combination. Trends in Plant Science, 11(1), 15–19. https://doi.org/10.1016/j.tplants.2005.11.002

Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P. D. (2012). Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research Atmospheres, 117, D08101. https://doi.org/10.1029/2011JD017187

Nadal, M., Marquès, M., Mari, M., & Domingo, J. L. (2015). Climate change and environmental concentrations of POPs: A review. Environmental Research, 143(A), 177–185. https://doi.org/10.1016/j.envres.2015.10.012

Naser, H. A. (2014). Marine Ecosystem Diversity in the Arabian Gulf: Threats and Conservation. In Biodiversity - The Dynamic Balance of the Planet. https://doi.org/10.5772/57425

Newbold, T., Hudson, L. N., Arnell, A. P., Contu, S., De Palma, A., Ferrier, S., … Purvis, A. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science, 353(6296), 288–291. https://doi.org/10.1126/science.aaf2201

Norby, R. J., Wullschleger, S. D., Gunderson, C. A., Johnson, D. W., & Ceulemans, R. (1999). Tree responses to rising CO2 in field experiments: Implications for the future forest. Plant, Cell and Environment, 22(6), 683–714. https://doi.org/10.1046/j.1365-3040.1999.00391.x

Obradovich, N., & Fowler, J. H. (2017). Climate change may alter human physical activity patterns. Nature Human Behaviour, 1, 0097. https://doi.org/10.1038/s41562-017-0097

Occhipinti-Ambrogi, A. (2007). Global change and marine communities: Alien species and climate change. Marine Pollution Bulletin, 55(7–9), 342–352. https://doi.org/10.1016/j.marpolbul.2006.11.014

Osborne, C. P., & Freckleton, R. P. (2009). Ecological selection pressures for C4 photosynthesis in the grasses. Proceedings of the Royal Society B: Biological Sciences, 276(1663), 1753–1760. https://doi.org/10.1098/rspb.2008.1762

PACCSAP. (2011). Pacific-Australia Climate Change Science and Adaptation Planning Program: Current and future climate of Papua New Guinea. Papua New Guinea. Retrieved from https://www.pacificclimatechangescience.org/wp-content/uploads/2013/06/14_PACCSAP-PNG-11pp_WEB.pdf

Patterson, D. T. (1993). Implications of Global Climate Change for Impact of Weeds, Insects, and Plant Diseases. In International Crop Science I (pp. 273–280). Madison: Crop Science Society of America. https://doi.org/10.2135/1993.internationalcropscience.c42

Patterson, D. T. (1995). Weeds in a Changing Climate. Weed Science, 43(4), 685–701. https://doi.org/10.1017/s0043174500081832

Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & Somerville, R. C. J. (2007). Recent climate observations compared to projections. Science, 316(5825), 709. https://doi.org/10.1126/science.1136843

Robbins, J. C., & Petterson, M. G. (2015). Landslide inventory development in data spare region: spatial and temporal characteristics in Papua New Guinea. Natural Hazard and Earth System Sciences, 3, 4871–4917.

Sage, R. F., & Kubien, D. S. (2003). Quo vadis C4? An ecophysiological perspective on global change and the future of C4 plants. Photosynthesis Research, 77(2–3), 209–225. https://doi.org/10.1023/A:1025882003661

Shearman, P. L., Ash, J., MacKey, B., Bryan, J. E., & Lokes, B. (2009). Forest conversion and degradation in Papua New Guinea 1972-2002. Biotropica, 41(3), 379–390. https://doi.org/10.1111/j.1744-7429.2009.00495.x

Simpson, B. M. (2016). Preparing Smallholder Farm Families to Adapt to Climate Change. Pocket Guide 1 Extension Practice for Agricultural Adaptation. (G. Burpee & D. Pachico, Eds.). Baltimore, MD, USA: Catholic Relief Services.

Soba, D., Sinda, B. M., Fuertes-Mendizábal, T., Méndez-Espinoza, A. M., Gilard, F., González-Murua, C., … Aranjuelo, I. (2019). Metabolic Effects of Elevated CO2 on Wheat Grain Development and Composition. Journal of Agricultural and Food Chemistry, 67(31), 8441–8451. https://doi.org/10.1021/acs.jafc.9b01594

SOPAC. (2007). National Integrated Water Resource Management Diagnostic Report Papua New Guinea. Suva, Fiji.

Spencer, J. E. (1963). The migration of rice from mainland Southeast Asia into Indonesia. In J. Barrau (Ed.), Plants and the migrations of Pacific peoples; a symposium. (pp. 83–89). Honolulu: Bishop Museum Press.

Spencer, W. E., Teeri, J., & Wetzel, R. G. (1994). Acclimation of photosynthetic phenotype to environmental heterogeneity. Ecology, 75(2), 301–314. https://doi.org/10.2307/1939536

Subramaniyan, P., Jothi, L. J., Shoba, N., & Murugesan, S. (2017). Carbon sequestration in plantation crops. International Journal of Scientific Development and Research, 2(5), 96–101.

Toyoda, Y. (2018). Life and livelihood in sago-growing areas. In H. Ehara, Y. Toyoda, & D. V. Johnson (Eds.), Sago Palm: Multiple Contributions to Food Security and Sustainable Livelihoods (pp. 31–42). Singapore: Springer. https://doi.org/10.1007/978-981-10-5269-9_3

Via, S., & Lande, R. (1987). Evolution of genetic variability in a spatially heterogeneous environment: Effects of genotype–environment interaction. Genetical Research, 49(2), 147–156. https://doi.org/10.1017/S001667230002694X

Vu, J. C. V. (2005). Rising atmospheric CO2 and C4 photosynthesis. In Handbook of Photosynthesis, Second Edition. https://doi.org/10.1201/9781420027877

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., … Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America. https://doi.org/10.1073/pnas.0905620106

Westerling, A. L., Hidalgo, H. G., Cayan, D. R., & Swetnam, T. W. (2006). Warming and earlier spring increase Western U.S. forest wildfire activity. Science, 313(5789), 940–943. https://doi.org/10.1126/science.1128834

Wickham, F., Kinch, J., Mitchell, D., Bongro, M., Alphonse, R., Sissiou, G., … Nicholls, S. (2010). National capacity self assessment project: assessing the capacity of Papua New Guinea to implement the United Nations Convention on Biological Diversity (UNCBD), the United Nations Convention to Combat Desertification (UNCCD), and the United Nations Frame. Papua New Guinea.

Wu, H. B.-F., Yu, T. T., & Liou, T.-D. (1974). Physiological and biochemical comparisons of sweet potato varieties sensitive (Tai-long 57) and insensitive (Red-tuber-tail) to chilling temperature. In R. L. Bieleski, A. R. Ferguson, & M. M. Creswell (Eds.), Mechanisms of Regulation of Plant Growth (pp. 483–486). New Zealand: Royal Society of New Zealand Bulletin 12.

Ziska, L., & Runion, G. (2007). Future weed, pest and disease problems for plants. In P. C. D. Newton, R. A. Carran, G. R. Edwards, & P. A. Niklaus (Eds.), Agroecosystems in a Changing Climate (pp. 261–287). Boca Raton, FL: CRC Press.

Zvereva, E. L., & Kozlov, M. V. (2010). Responses of terrestrial arthropods to air pollution: A meta-analysis. Environmental Science and Pollution Research. https://doi.org/10.1007/s11356-009-0138-0

Refbacks

  • There are currently no refbacks.