Physiology and Biochemistry of Fe Excess in Acidic Asian Soils on Crop Plants

Sangita Dey, Saradia Kar, Preetom Regon, Sanjib Kumar Panda

Abstract

Proper transport of iron is very crucial for plant growth and development as it participates in various complex processes in plants like absorption, translocation etc. It also acts as an important component for processes like photosynthesis and respiratory electron transport chain in mitochondria, chloroplast development, and chlorophyll biosynthesis. Asian soils suffer from iron toxic condition and that adversely affects the growth and yield of the plant. This review describes the importance of iron in plant growth and different strategies adopted by plants for iron uptake. It also focuses on different methods and approaches on how plant can cope against acidic soils.

Keywords

iron excess; iron homeostasis; gene; transcription factor

Full Text:

PDF

References

Aksoy, E., Jeong, I. S., & Koiwa, H. (2013). Loss of Function of Arabidopsis C-Terminal Domain Phosphatase-Like1 Activates Iron Deficiency Responses at the Transcriptional Level. Plant Physiology, 161(1), 330–345.

Aoyama, T., Kobayashi, T., Takahashi, M., Nagasa, S., Usuda, K., Kakei, Y., … Nishizawa, N. K. (2009). OsYSL18 is a Rice Iron(III)-Deoxymugineic Acid Transporter Specifically Expressed in Reproductive Organs and Phloem of Lamina Joints. Plant Molecular Biology, 70(6), 681–692.

Bashir, K., Inoue, H., Nagasaka, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Cloning and Characterization of Deoxymugineic Acid Synthase Genes from Graminaceous Plants. Journal of Biological Chemistry, 281(43), 32395–32402.

Bauer, P., Thiel, T., Klatte, M., Bereczky, Z., Brumbarova, T., Hell, R., & Grosse, I. (2004). Analysis of Sequence, Map Position, and Gene Expression Reveals Conserved Essential Genes for Iron Uptake in Arabidopsis and Tomato. Plant Physiology, 136(4), 4169–4183.

Becker, M., & Asch, F. (2005). Iron Toxicity in Rice - Conditions and Management Concepts. Plant Nutrient and Soil Science, 168(4), 558–573.

Boruah, K. K., & Bharali, A. (2015). Physiological Basis of Iron Toxicity and its Management in Crops. In A. L. Singh (Ed.), Recent Advances in Crop Physiology (Vol. 2, pp. 203–224). New Delhi, India: Daya Publishing House.

Brear, E. M., Day, D. A., & Smith, P. M. (2013). Iron: an Essential Micronutrient for the Legume-Rhizobium Symbiosis. Frontiers in Plant Science, 4, 1–15. 10.3389/fpls.2013.00359

Briat, J. F., Ravet, K., Arnaud, N., Duc, C., Boucherez, J., Touraine, B., … Gaymard, F. (2010). New Insights into Ferritin Synthesis and Function Highlight a Link Between Iron Homeostasis and Oxidative Stress in Plants. Annals of Botany, 105(5), 811–822.

Brown, J. C., & Chaney, R. L. (1971). Effect of Iron on the Transport of Citrate into the Xylem of Soybeans and Tomatoes. Plant Physiology, 47, 836–840.

Brumbarova, T., Bauer, P., & Ivanov, R. (2015). Molecular Mechanisms Governing Arabidopsis Iron Uptake. Trends in Plant Science, 20(2), 124–133.

Bughio, N., Yamaguchi, H., Nishizawa, N. K., Nakanishi, H., & Mori, S. (2002). Cloning an Iron-Regulated Metal Transporter from Rice. Journal of Experimental Botany, 53(374), 1677–1682.

Chen, W. W., Yang, J. L., Qin, C., Jin, C. W., Mo, J. H., Ye, T., & Zheng, S. J. (2010). Nitric Oxide Acts Downstream of Auxin to Trigger Root Ferric-Chelate Reductase Activity in Response to Iron Deficiency in Arabidopsis. Plant Physiology, 154(2), 810–819.

Connolly, E. L., Campbell, N. H., Grotz, N., Prichard, C. L., & Guerinot, M. L. (2003). Overexpression of the FRO2 Ferric Chelate Reductase Confers Tolerance to Growth on Low Iron and Uncovers Posttranscriptional Control. Plant Physiology, 133(3), 1102–1110.

Connolly, E. L., & Guerinot, M. L. (2002). Iron Stress in Plants. Genome Biology, 3(8), REVIEWS1024.

Curie, C., Cassin, G., Couch, D., Divol, F., Higuchi, K., Le Jean, M., … Mari, S. (2009). Metal Movement within the Plant: Contribution of Nicotianamine and Yellow Stripe 1-like Transporters. Annals of Botany, 103(1), 1–11.

Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J. F., & Walker, E. L. (2001). Maize Yellow Stripe1 Encodes a Membrane Protein Directly Involved in Fe(III) Uptake. Nature, 409(6818), 346–349.

Durrett, T. P., Gassmann, W., & Rogers, E. E. (2007). The FRD3-Mediated Efflux of Citrate into the Root Vasculature is Necessary for Efficient Iron Translocation. Plant Physiology, 144(1), 197–205.

Ernst, W. H. O. (2006). Evolution of Metal Tolerance in Higher Plants. Forest Snow and Landscape Research, 80(3), 251–274.

Eroglu, S., Meier, B., von Wirén, N., & Peiter, E. (2016). The Vacuolar Manganese Transporter MTP8 Determines Tolerance to Iron De fi ciency-Induced Chlorosis. Plant Physiology, 170(2), 1030–1045.

García, M. J., Lucena, C., Romera, F. J., Alcántara, E., & Pérez-Vicente, R. (2010). Ethylene and Nitric Oxide Involvement in the Up-Regulation of Key Genes Related to Iron Acquisition and Homeostasis in Arabidopsis. Journal of Experimental Botany, 61(14), 3885–3899.

Goeres, D. C., van Norman, J. M., Zhang, W., Fauver, N. A., Spencer, M. L., & Sieburth, L. E. (2007). Components of the Arabidopsis mRNA Decapping Complex Are Required for Early Seedling Development. Plant Cell, 19(5), 1549–1564.

Graziano, M., & Lamattina, L. (2007). Nitric Oxide Accumulation is Required for Molecular and Physiological Responses to Iron Deficiency in Tomato Roots. Plant Journal, 52(5), 949–960.

Green, L. S., & Rogers, E. E. (2004). FRD3 Controls Iron Localization in Arabidopsis. Plant Physiology, 136, 2523–2531.

Grotz, N., & LouGuerinot, M. (2006). Molecular Aspects of Cu, Fe and Zn Homeostasis in Plants. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1763(7), 595–608.

Gruber, B. D., Giehl, R. F. H., Friedel, S., & von Wiren, N. (2013). Plasticity of the Arabidopsis Root System under Nutrient Deficiencies. Plant Physiology, 163, 161–179.

Heazlewood, J. L., Tonti-Filippini, J. S., Gout, A. M., Day, D. A., Whelan, J., & Millar, A. H. (2004). Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins. Plant Cell, 16(1), 241–256.

Heil, M., & Baldwin, I. T. (2002). Fitness Costs of Induced Resistance: Emerging Experimental Support for a Slippery Concept. Trends in Plant Science, 7(2), 61–67.

Hell, R., & Stephan, U. W. (2003). Iron Uptake, Trafficking and Homeostasis in Plants. Planta, 216(4), 541–551.

Higuchi, K., Suzuki, K., NakanishI, H., Yamaguchi, H., Nishizawa, N. K., & Mori, S. (1999). Cloning of Nicotianamine Synthase Genes, Novel Genes Involved in the Biosynthesis of Phytosiderophores. Plant Physiology, 119(2), 471–480.

Inoue, H., Kobayashi, T., Nozoye, T., Takahashi, M., Kakei, Y., Suzuki, K., … Nishizawa, N. K. (2009). Rice OsYSL15 is an Iron-Regulated Iron (III)-Deoxymugineic Acid Transporter Expressed in the Roots and is Essential for Iron Uptake in Early Growth of the Seedlings. Journal of Biological Chemistry, 284(6), 3470–3479.

Ishimaru, Y., Kakei, Y., Shimo, H., Bashir, K., Sato, Y., Sato, Y., … Nishizawa, N. K. (2011). A Rice Phenolic Efflux Transporter is Essential for Solubilizing Precipitated Apoplasmic Iron in the Plant Stele. Journal of Biological Chemistry, 286(28), 24649–24655.

Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., … Nishizawa, N. K. (2010). Rice Metal-Nicotianamine Transporter, OsYSL2, is Required for the Long-Distance Transport of Iron and Manganese. Plant Journal, 62(3), 379–390.

Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., … Nishizawa, N. K. (2006). Rice Plants take up Iron as an Fe3+- phytosiderophore and as Fe2+. Plant Journal, 45(3), 335–346.

Jakoby, M., Wang, H. Y., Reidt, W., Weisshaar, B., & Bauer, P. (2004). FRU (BHLH029) is Required for Induction of Iron Mobilization Genes in Arabidopsis Thaliana. FEBS Letter, 577(3), 528–534.

Jeong, J., Cohu, C., Kerkeb, L., Pilon, M., Connolly, E. L., & Guerinot, M. L. (2008). Chloroplast Fe(III) Chelate Reductase Activity is Essential for Seedling Viability under Iron Limiting Conditions. Proceeding of the National Academy of Science of the United State of America, 105(30), 10619–10624.

Jeong, J., & Guerinot, M. L. (2009). Homing in on Iron Homeostasis in Plants. Trends in Plant Science, 14(5), 280–285.

Jin, C. W., Li, G. X., Yu, X. H., & Zheng, S. J. (2010). Plant Fe Status Affects the Composition of Siderophore-Secreting Microbes in the Rhizosphere. Annals of Botany, 105(5), 835–841.

Kar, S., & Panda, S. K. (2018). Iron Homeostasis in Rice: Deficit and Excess Sciences. In Proceedings of the National Academy of Sciences, India - Section B: Biological Sciences (pp. 1–9).

Kim, S. A., & Guerinot, M. L. (2007). Mining Iron: Iron Uptake and Transport in Plants. FEBS Letter, 581(12), 2273–2280.

Kim, S. A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J. M., Ecker, J. R., … Guerinot, M. L. (2006). Localization of Iron in Arabidopsis Seed Requires the Vacuolar Membrane Transporter VIT1. Science, 314(5803), 1295–1298.

Kobayashi, T., & Nishizawa, N. K. (2012). Iron Uptake, Translocation, and Regulation in Higher Plants. Annual Review of Plant Biology, 63, 131–152.

Kobayashi, T., Suzuki, M., Inoue, H., Itai, R. N., Takahashi, M., Nakanishi, H., … Nishizawa, N. K. (2005). Expression of Iron-Acquisition-Related Genes in Iron-Deficient Rice is Co-Ordinately Induced by Partially Conserved Iron-Deficiency-Responsive Elements. Journal of Experimental Botany, 56(415), 1305–1316.

Koike, S., Inoue, H., Mizuno, D., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2004). OsYSL2 is a Rice Metal-Nicotianamine Transporter that is Regulated by iron and Expressed in the Phloem. Plant Journal, 39(3), 415–424.

Kosegarten, H., Hoffmann, B., Rroco, E., Grolig, F., Glüsenkamp, K. H., & Mengel, K. (2004). Apoplastic pH and FeIII Reduction in Young Sunflower (Helianthus annuus) Roots. Physiologia Plantarum, 122(1), 95–106.

Lee, S., Chiecko, J. C., Kim, S. A., Walker, E. L., Lee, Y., Guerinot, M. L., & An, G. (2009). Disruption of OsYSL15 Leads to Iron Inefficiency in Rice Plants. Plant Physiology, 150, 786–800.

Li, G., Song, H., Li, B., Kronzucker, H. J., & Shi, W. (2015). Auxin Resistant1 and PIN-FORMED2 Protect Lateral Root Formation in Arabidopsis under Iron Stress. Plant Physiology, 169, 2608–2623.

Li, G., Xu, W., Kronzucker, H. J., & Shi, W. (2015). Ethylene is Critical to the Maintenance of Primary Root Growth and Fe Homeostasis under Fe Stress in Arabidopsis. Journal of Experimental Botany, 66(7), 2041–2054.

Li, L., Chen, O. S., McVey Ward, D., & Kaplan, J. (2001). CCC1 is a Transporter that Mediates Vacuolar Iron Storage in Yeast. Journal of Biological Chemistry, 276(31), 29515–29519.

Li, X., & Li, C. (2004). Is Ethylene Involved in Regulation of Root Ferric Reductase Activity of Dicotyledonous Species under Iron Deficiency? Plant and Soil, 261(1–2), 147–153.

Li, X., Ma, H., Jia, P., Wang, J., Jia, L., Zhang, T., … Wei, X. (2012). Responses of Seedling Growth and Antioxidant Activity to Excess Iron and Copper in Triticumaestivum L. Ecotoxicology and Environment Safety, 86, 47–53.

Lingam, S., Mohrbacher, J., Brumbarova, T., Potuschak, T., Fink-Straube, C., Blondet, E., … Bauer, P. (2011). Interaction between the bHLH Transcription Factor FIT and ETHYLENE INSENSITIVE3/ETHYLENE INSENSITIVE3-LIKE1 Reveals Molecular Linkage between the Regulation of Iron Acquisition and Ethylene Signaling in Arabidopsis. Plant Cell, 23(5), 1815–1829.

Long, T. A., Tsukagoshi, H., Busch, W., Lahner, B., Salt, D. E., & Benfey, P. N. (2010). The bHLH Transcription Factor POPEYE Regulates Response to Iron Deficiency in Arabidopsis Roots. Plant Cell, 22, 2219–2236.

Mahender, A., Swamy, B. P. M., Anandan, A., & Ali, J. (2019). Tolerance if Iron-Deficient and Toxic Soil Condition in Rice. Plants, 8(2), 1–34.

Majerus, V., Bertin, P., & Lutts, S. (2009). Abscisic Acid and Oxidative Stress Implications in Overall Ferritin Synthe. Plant and Soil, 324, 253–265.

Mehes-Smith, M., Nkongolo, K., & Cholewa, E. (2013). Coping Mechanisms of Plants to Metal Contaminated Soil. In S. Silvern & S. Young (Eds.), Environmental Change and Sustainability (pp. 53–90). London, UK: IntechOpen.

Meiser, J., Lingam, S., & Bauer, P. (2011). Posttranslational Regulation of the Iron Deficiency Basic Helix-Loop-Helix Transcription Factor FIT Is Affected by Iron and Nitric Oxide. Plant Physiology, 157(4), 2154–2166.

Mukherjee, I., Campbell, N. H., Ash, J. S., & Connolly, E. L. (2006). Expression Profiling of the Arabidopsis Ferric Chelate Reductase (FRO) Gene Family Reveals Differential Regulation by Iron and Copper. Planta, 223(6), 1178–1190.

Nikolic, M., & Pavlovic, J. (2018). Plant Responses to Iron Deficiency and Toxicity and Iron Use Efficiency in Plants. In M. A. Hossain, T. Kamiya, D. Burritt, L. S. P. Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency Molecular and Genomic Perspectives in Crop Plants (pp. 55–69). Massachusetts, USA: Academic Press.

Nozoye, T., Nagasaka, S., Kobayashi, T., Takahashi, M., Sato, Y., Sato, Y., … Nishizawa, N. K. (2011). Phytosiderophore Efflux Transporters are Crucial for Iron Acquisition in Graminaceous Plants. Journal of Biological Chemistry, 286(7), 5446–5454.

Palmer, C. M., Hindt, M. N., Schmidt, H., Clemens, S., & Guerinot, M. L. (2013). MYB10 and MYB72 are Required for Growth under Iron-Limiting Conditions. PLoS Genetic, 9(11). 10.1371/journal.pgen.1003953

Peng, X. X., & Yamauchi, M. (1993). Ethylene Production in Rice Bronzing Leaves Induced by Ferrous Iron. Plant and Soil, 149(2), 227–234.

Rampey, R. A., Woodward, A. W., Hobbs, B. N., Tierney, M. P., Lahner, B., Salt, D. E., & Bartel, B. (2006). An Arabidopsis Basic Helix-Loop-Helix Leucine Zipper Protein Modulates Metal Homeostasis and Auxin Conjugate Responsiveness. Genetics, 174(4), 1841–1857.

Rogers, E. E., & Guerinot, M. L. (2002). FRD3, a Member of the Multidrug and Toxin Efflux Family, Controls Iron Deficiency Responses in Arabidopsis. Plant Cell, 14(8), 1787–1799.

Römheld, V., & Marschne, H. (1986). Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiology, 80(1), 175–180.

Römheld, V., & Schaaf, G. (2004). Iron Transport in Plants: Future Research in View of a Plant Nutritionist and a Molecular Biologist. Soil Science and Plant Nutrition, 50(7), 1003–1012.

Roschzttardtz, H., Conéjéro, G., Divol, F., Alcon, C., Verdeil, J. L., Curie, C., & Mari, S. (2013). New Insights into Fe Localization in Plant Tissues. Frontiers in Plant Science, 4(350), 1–11.

Sahrawat, K. L. (2005). Iron Toxicity in Wetland Rice and the Role of Other Nutrients. Journal of Plant Nutrition, 27(8), 1471–1504.

Santi, S., & Schmidt, W. (2009). Dissecting Iron Deficiency-Induced Proton Extrusion in Arabidopsis Roots. New Phytologist, 183(4), 1072–1084.

Schmidt, W. (2006). Iron Stress Responses in Roots of Strategy I Plant. In L. L. Barton & J. Abadia (Eds.), Iron Nutrition in Plants and Rhizospheric Microorganisms. Switzerland: Springer, Cham.

Schmidt, W., Tittel, J., & Schikora, A. (2000). Role of Hormones in the Induction of Iron Deficiency Responses in Arabidopsis Roots. Plant Physiology, 122, 1109–1118.

Shojima, S., Nishizawa, N. K., Fushiya, S., Nozoe, S., Irifune, T., & Mori, S. (1990). Biosynthesis of Phytosiderophores. Plant Physiology, 93, 1497–1503.

Sivitz, A. B., Hermand, V., Curie, C., & Vert, G. (2012). Arabidopsis bHLH100 and bHLH101 Control Iron Homeostasis via a FIT-Independent Pathway. PLos One, 7(9). 10.1371/journal.pone.0044843.

Sivitz, A., Grinvalds, C., Barberon, M., Curie, C., & Vert, G. (2011). Proteasome-Mediated Turnover of the Transcriptional Activator FIT is Required for Plant Iron-Deficiency Responses. Plant Journal, 66(6), 1044–1052.

Sperotto, R. A., Menguer, P. K., & Ricachenevsky, F. K. (2018). Molecular Bases of Iron Accumulation Towards the Development of Iron-Enriched Crops. In M. A. Hossain, T. Kamiya, D. J. Burritt, L. S. P. Tran, & T. Fujiwara (Eds.), Plant Micronutrient Use Efficiency Molecular and Genomic Perspectives in Crop Plants (pp. 17–54). Massachusetts, USA: Academic Press.

Staal, M., De Cnodder, T., Simon, D., Vandenbussche, F., Van der Straeten, D., Verbelen, J. P., … Vissenberg, K. (2011). Apoplastic Alkalinization is Instrumental for the Inhibition of Cell Elongation in the Arabidopsis Root by the Ethylene Precursor 1-Aminocyclopropane-1-Carboxylic Acid. Plant Physiology, 155(4), 2049–2055.

Sudre, D., Gutierrez-Carbonell, E., Lattanzio, G., Rellán-Álvarez, R., Gaymard, F., Wohlgemuth, G., … Briat, J. F. (2013). Iron-Dependent Modifications of the Flower Transcriptome, Proteome, Metabolome, and Hormonal Content in an Arabidopsis Ferritin Mutant. Journal of Experimental Botany, 64(10), 2665–2688.

Takahashi, M., Terada, Y., Nakai, I., Nakanishi, H., Yoshimura, E., Mori, S., & Nishizawa, N. K. (2003). Role of Nicotianamine in the Intracellular Delivery of Metals and Plant Reproductive Developmen. Plant Cell, 15(6), 1263–1280.

Takahashi, M., Yamaguchi, H., Nakanishi, H., Shioiri, T., Nishizawa, N. K., & Mori, S. (1999). Cloning Two Genes for Nicotianamine Aminotransferase, a Critical Enzyme in Iron Acquisition (Strategy II) in Graminaceous Plants. Plant Physiology, 121(3), 947–956.

Tanaka, A., & Yoshida, S. (1970). Nutritional Disorder of Rice Plant in Asia. Los Banos, Philippines: IRRI Technical Bull.

Tsukamoto, T., Nakanishi, H., Uchida, H., Watanabe, S., Matsuhashi, S., Mori, S., & Nishizawa, N. K. (2009). Fe Translocation in Barley as Monitored By a Positron-Emitting Tracer Imaging System (Petis): Evidence For The Direct Translocation of Fe from Roots to Young Leaves Via Phloem. Plant and Cell Physiology, 50(1), 48–57.

van Breemen, N. (1988). Effects of Seasonal Redox Processes Involving iron on the Chemistry of Periodically Reduced Soils. In J. W. Stucki, B. A. Goodman, & U. Schwertmann (Eds.), Iron in Soils and Clay Minerals (Vol. 217, pp. 797–809). Switzerland: Springer Nature.

Van der Ent, S., Verhagen, B. W., Van Doorn, R., Bakker, D., Verlaan, M. G., Pel, M. J., … Pieterse, C. M. (2008). MYB72 Is Required in Early Signaling Steps of Rhizobacteria-Induced Systemic Resistance in Arabidopsis. Plant Physiology, 146(3), 1293–1304.

Wang, H. Y., Klatte, M., Jakoby, M., Bäumlein, H., Weisshaar, B., & Bauer, P. (2007). Iron Deficiency-Mediated Stress Regulation of Four Subgroup Ib BHLH Genes in Arabidopsis thaliana. Planta, 226(4), 897–908.

Wisniewska, J., Xu, J., Seifertová, D., Brewer, P. B., Ruzicka, K., Blilou, I., … Friml, J. (2006). Polar PIN Localization Directs Auxin Flow in Plants. Science, 312(5775), 883 p.

Xiong, J., An, L., Lu, H., & Zhu, C. (2009). Exogenous Nitric Oxide Enhances Cadmium Tolerance of Rice by Increasing Pectin and Hemicellulose Contents in Root Cell Wall. Planta, 230(4), 755–765.

Yang, J. L., Chen, W. W., Chen, L. Q., Qin, C., Jin, C. W., Shi, Y. Z., & Zheng, J. S. (2013). The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) Acts Downstream of Nitric Oxide to Regulate Iron Acquisition in Arabidopsis thaliana. New Phytologist, 197(3), 815–824.

Yang, Y., Ou, B., Zhang, J., Si, W., Gu, H., Qin, G., & Qu, L. J. (2014). The Arabidopsis Mediator Subunit MED16 Regulates Iron Homeostasis by Associating with EIN3/EIL1 Through Subunit MED25. Plant Journal, 77(6), 838–851.

Yokosho, K., Yamaji, N., Ueno, D., Mitani, N., & Ma, J. F. (2008). OsFRDL1 Is a Citrate Transporter Required for Efficient Translocation of Iron in Rice. Plant Physiology, 149, 297–305.

Yuan, Y., Wu, H., Wang, N., Li, J., Zhao, W., Du, J., … Ling, H. Q. (2008). FIT Interacts with AtbHLH38 and AtbHLH39 in Regulating Iron Uptake Gene Expression for iron Homeostasis in Arabidopsis. Cell Research, 18(3), 385–397.

Yuan, Y. X., Zhang, J., Wang, D. W., & Ling, H. Q. (2005). AtbHLH29 of Arabidopsis thaliana is a Functional Ortholog of Tomato FER Involved in Controlling Iron Acquisition in Strategy I Plants. Cell Research, 15(8), 613–621.

Zhang, Y., Wu, H., Wang, N., Fan, H., Chen, C., Cui, Y., … Ling, H. Q. (2014). Mediator Subunit 16 Functions in the Regulation of Iron Uptake Gene Expression in Arabidopsis. New Phytologist, 203(3), 770–783.

Zhang, Y., Xu, Y. H., Yi, H. Y., & Gong, J. M. (2012). Vacuolar Membrane Transporters OsVIT1 and OsVIT2 Modulate iron Translocation between Flag Leaves and Seeds in Rice. Plant Journal, 72(2), 400–410.

Zhu, X. F., Wang, Z. W., Dong, F., Lei, G. J., Shi, Y. Z., Li, G. X., & Zheng, S. J. (2013). Exogenous Auxin Alleviates Cadmium Toxicity in Arabidopsis thaliana by Stimulating Synthesis of Hemicellulose 1 and Increasing the Cadmium Fixation Capacity of Root Cell Walls. Journal of Hazard Materials, 263(2), 398–403. https://doi.org/10.1016/j.jhazmat.2013.09.018

Zuchi, S., Cesco, S., Varanini, Z., Pinton, R., & Astolfi, S. (2009). Sulphur Deprivation Limits Fe-Deficiency Responses in Tomato Plants. Planta, 230(1), 85–94.

Refbacks

  • There are currently no refbacks.