Characteristics of Corn Cobs Waste Activated Carbon for Slow Release Micro Fertilizer Carrier

Priyadi Priyadi, Windu Mangiring

Abstract

The problem of Fertilization, especially micro fertilizers, is toxication due to the excessive application. Using the concept of slow release fertilizer is a very possible solution to overcome the problem. The objectives of this study are 1) to characterize corn cobs activated carbon for slow release micro fertilizer carrier, 2) to produce and to test of slow release micro fertilizer.The research was carried out by converting corn cobs into activated carbon with an activation temperature of 600 ˚C and water vapor for 90 minutes. Production of slow release fertilizer was carried out by soaking activated carbon in a solution of CuSO4, FeSO4 and ZnSO4 1N for 24 hours. The results of micro fertilizer were then characterized, then the solubility test was carried out. The results of the characteristic analysis showed that some parameters that could be used as fertilizer carriers include, iodine adsorption 404.21 mg g-1, adsorption of methylene blue 16.88 mg g-1, the pore volume of 0.19 cc mg-1 and surface area of 315.77 m2 g-1. While, based on the results of micronutrient solubility test the highest nutrient content that can be absorbed by activated carbon (AA) is found in Cu, followed by Zn and Fe. It relates to the characteristics possessed by activated carbon namely specific surface area, pore volume, and nutrient diameter size.

 

Keywords

Activated carbon; Adsorption carrier; Corn cobs; Slow release

Full Text:

PDF

References

Adegbidi, H. G., Briggs, R. D., Volk, T. A., White, E. H., & Abrahamson, L. P. (2003). Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy, 25(4), 389–398. doi: 10.1016/S0961-9534(03)00038-2

Al Tufaily, M. A. M., & Al Qadi, Z. S. R. (2016). Preparation and Utilization of Corncob Activated Carbon for Dyes Removal from Aqueous Solutions : Batch and Continuous Study. Journal of Babylon, 24(3), 700–712.

Aloko, D. F., & Adebayo, G. A. (2007). Production and Characterization of Activated Carbon from Agricultural Waste (Rice-husk and Corn-cob). Journal of Engineering and Applied Sciences, 2(2), 440–444.

Amin, M. T., & Alazba, A. A. (2017). Comparative study of the absorptive potential of raw and activated carbon Acacia nilotica for Reactive Black 5 dye. Environmental Earth Sciences, 76(16), 1–7. doi: 10.1007/s12665-017-6927-8

Blaylock, A. D., Kaufmann, J., & Dowbenko, R. D. (2005). Nitrogen fertilizer technologies. Western Nutrient Management, 6, 8–13. Retrieved from

BPS-Statistics of Lampung Province. (2013). Production of Paddy, Maize and Soybeans 2013. In BPS-Statistics of Lampung Province. doi: 10.1017/CBO9781107415324.004

Buah, W., MacCarthy, J., & Ndur, S. (2016). Conversion of Corn Cobs Waste into Activated Carbons for Adsorption of Heavy Metals from Minerals Processing Wastewater. 4(4), 98–103. doi: 10.11648/j.ijepp.20160404.11

Bunyamin, Z., Efendi, R., & Andayani, N. N. (2013). Utilization of corn waste for the animal feed industry. Seminar Nasional Inovasi Teknologi Pertanian, pp. 153–166.

Clough, T. J., & Condron, L. M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of Environment Quality, 39(4), 1218. doi: 10.2134/jeq2010.0204

Du, C. W., Zhou, J. M., & Shaviv, A. (2006). Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. Journal of Polymers and the Environment, 14(3), 223–230. doi: 10.1007/s10924-006-0025-4

Graham, R. L., Nelson, R., Sheehan, J., & Perlack, R. D. & Wright, L. L. (2007). Current and potential U.S. corn stover supplies. Agronomy Journal, 99(1), 1–11. doi: 10.2134/agronj2005.0222

Hayashi, K., Gummert, M., & Zaini, Z. (2013). Biochar for future food security: learning from experiences and identifying research priorities. In K. Hayashi (Ed.), National Workshop on Biochar for Food Security: Learning from Experiances and Identifying (pp. 37–46). Indonesia: IRRI.

Kamala, C. T., Balaram, V., Dharmendra, V., Subramanyam, K. S. V., & Krishnaiah, A. (2014). Application of Microwave Plasma Atomic Emission Spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad City. Environmental Monitoring and Assessment, 186(11), 7097–7113. doi: 10.1007/s10661-014-3913-4

Keech, O., Carcaillet, C., & Nilsson, M. C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal: The role of wood porosity. Plant and Soil, 272(1–2), 291–300. doi: 10.1007/s11104-004-5485-5

Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. doi: 10.1016/j.geoderma.2010.05.012

Luangkiattikhun, P., Tangsathitkulchai, C., & Tangsathitkulchai, M. (2008). Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresource Technology, 99(5), 986–997. doi: 10.1016/j.biortech.2007.03.001

McCutcheon, J., & Samples, D. (2002). Grazing Corn Residues. Extension Fact Sheet Ohio State University Extension. US. ANR10-02.

Munawaroh, I. (2012). Utilization of corncob as adsorbent rhodamin b and methanil yellow. UIN Sunan Kalijaga Yogyakarta.

Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research, 48(6–7), 638–647. doi: 10.1071/SR10049

National Standardization Agency of Indonesia. (1995). Technical activated carbon. Indonesia.

Pari, G., Widayati, D. T., & Yoshida, M. (2009). The quality sawdust activated charcoal. Jurnal Penelitian Hasil Hutan, 27(4), 381–398. doi: 10.20886/jphh.2009.27.4.381-398

Rao, M. M., Ramana, D. K., Seshaiah, K., Wang, M. C., & Chien, S. W. C. (2009). Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. Journal of Hazardous Materials, 166(2–3), 1006–1013. doi: 10.1016/j.jhazmat.2008.12.002

Shaviv, A. (2001). Advances in controlled release of fertilizers. Advances in Agronomy, 71, 1–49. doi: 10.1016/S0065-2113(01)71011-5

Singh, P. P., & Ambika. (2018). New Polymer Nanocomposites for Environmental Remediation. New Polymer Nanocomposites for Environmental Remediation, (1), 223–241.

Sudrajat, R., Anggorowati, & Setiawan, D. (2005). Manufacturing of activated charcoal from (Jatropha curcas L.) wood. Jurnal Penelitian Hasil Hutan, 23(4), 299–315.

Trenkel, M. E. (2010). Slow and Controlled Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. In Climate Change 2013 - The Physical Science Basis (Vol. 53). doi: 10.1017/CBO9781107415324.004

Tsai, W. T., Chang, C. Y., & Lee, S. L. (1998). A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. 64, 211–217. doi: 10.1016/S0960-8524(97)00168-5

Utomo, W. H., Widowati, Guritno, B., & Soehono, L. A. (2012). The Effect of Biochar on the Growth and N Fertilizer Requirement of Maize (Zea mays L.) in Green House Experiment. Journal of Agricultural Science, 4(5), 255–262. doi: 10.5539/jas.v4n5p255

Yang, H., Yan, R., Chin, T., Liang, D. T., Chen, H., & Zheng, C. (2004). Thermogravimetric Analysis−Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. Energy & Fuels, 18(6), 1814–1821. doi: 10.1021/ef030193m

Yang, R., Liu, G., Xu, X., Li, M., Zhang, J., & Hao, X. (2011). Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation. Biomass and Bioenergy, 35(1), 437–445. doi: 10.1016/j.biombioe.2010.08.061

Zych, D. (2008). The Viability of Corn Cobs As a Bioenergy Feedstock. West Central Research and Outreach Center, 1–25.