Characteristics of Corn Cobs Waste Activated Carbon for Slow Release Micro Fertilizer Carrier
Abstract
Keywords
Full Text:
PDFReferences
Adegbidi, H. G., Briggs, R. D., Volk, T. A., White, E. H., & Abrahamson, L. P. (2003). Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass and Bioenergy, 25(4), 389–398. doi: 10.1016/S0961-9534(03)00038-2
Al Tufaily, M. A. M., & Al Qadi, Z. S. R. (2016). Preparation and Utilization of Corncob Activated Carbon for Dyes Removal from Aqueous Solutions : Batch and Continuous Study. Journal of Babylon, 24(3), 700–712.
Aloko, D. F., & Adebayo, G. A. (2007). Production and Characterization of Activated Carbon from Agricultural Waste (Rice-husk and Corn-cob). Journal of Engineering and Applied Sciences, 2(2), 440–444.
Amin, M. T., & Alazba, A. A. (2017). Comparative study of the absorptive potential of raw and activated carbon Acacia nilotica for Reactive Black 5 dye. Environmental Earth Sciences, 76(16), 1–7. doi: 10.1007/s12665-017-6927-8
Blaylock, A. D., Kaufmann, J., & Dowbenko, R. D. (2005). Nitrogen fertilizer technologies. Western Nutrient Management, 6, 8–13. Retrieved from
BPS-Statistics of Lampung Province. (2013). Production of Paddy, Maize and Soybeans 2013. In BPS-Statistics of Lampung Province. doi: 10.1017/CBO9781107415324.004
Buah, W., MacCarthy, J., & Ndur, S. (2016). Conversion of Corn Cobs Waste into Activated Carbons for Adsorption of Heavy Metals from Minerals Processing Wastewater. 4(4), 98–103. doi: 10.11648/j.ijepp.20160404.11
Bunyamin, Z., Efendi, R., & Andayani, N. N. (2013). Utilization of corn waste for the animal feed industry. Seminar Nasional Inovasi Teknologi Pertanian, pp. 153–166.
Clough, T. J., & Condron, L. M. (2010). Biochar and the Nitrogen Cycle: Introduction. Journal of Environment Quality, 39(4), 1218. doi: 10.2134/jeq2010.0204
Du, C. W., Zhou, J. M., & Shaviv, A. (2006). Release characteristics of nutrients from polymer-coated compound controlled release fertilizers. Journal of Polymers and the Environment, 14(3), 223–230. doi: 10.1007/s10924-006-0025-4
Graham, R. L., Nelson, R., Sheehan, J., & Perlack, R. D. & Wright, L. L. (2007). Current and potential U.S. corn stover supplies. Agronomy Journal, 99(1), 1–11. doi: 10.2134/agronj2005.0222
Hayashi, K., Gummert, M., & Zaini, Z. (2013). Biochar for future food security: learning from experiences and identifying research priorities. In K. Hayashi (Ed.), National Workshop on Biochar for Food Security: Learning from Experiances and Identifying (pp. 37–46). Indonesia: IRRI.
Kamala, C. T., Balaram, V., Dharmendra, V., Subramanyam, K. S. V., & Krishnaiah, A. (2014). Application of Microwave Plasma Atomic Emission Spectrometry (MP-AES) for environmental monitoring of industrially contaminated sites in Hyderabad City. Environmental Monitoring and Assessment, 186(11), 7097–7113. doi: 10.1007/s10661-014-3913-4
Keech, O., Carcaillet, C., & Nilsson, M. C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal: The role of wood porosity. Plant and Soil, 272(1–2), 291–300. doi: 10.1007/s11104-004-5485-5
Laird, D., Fleming, P., Wang, B., Horton, R., & Karlen, D. (2010). Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma, 158(3–4), 436–442. doi: 10.1016/j.geoderma.2010.05.012
Luangkiattikhun, P., Tangsathitkulchai, C., & Tangsathitkulchai, M. (2008). Non-isothermal thermogravimetric analysis of oil-palm solid wastes. Bioresource Technology, 99(5), 986–997. doi: 10.1016/j.biortech.2007.03.001
McCutcheon, J., & Samples, D. (2002). Grazing Corn Residues. Extension Fact Sheet Ohio State University Extension. US. ANR10-02.
Munawaroh, I. (2012). Utilization of corncob as adsorbent rhodamin b and methanil yellow. UIN Sunan Kalijaga Yogyakarta.
Namgay, T., Singh, B., & Singh, B. P. (2010). Influence of biochar application to soil on the availability of As, Cd, Cu, Pb, and Zn to maize (Zea mays L.). Australian Journal of Soil Research, 48(6–7), 638–647. doi: 10.1071/SR10049
National Standardization Agency of Indonesia. (1995). Technical activated carbon. Indonesia.
Pari, G., Widayati, D. T., & Yoshida, M. (2009). The quality sawdust activated charcoal. Jurnal Penelitian Hasil Hutan, 27(4), 381–398. doi: 10.20886/jphh.2009.27.4.381-398
Rao, M. M., Ramana, D. K., Seshaiah, K., Wang, M. C., & Chien, S. W. C. (2009). Removal of some metal ions by activated carbon prepared from Phaseolus aureus hulls. Journal of Hazardous Materials, 166(2–3), 1006–1013. doi: 10.1016/j.jhazmat.2008.12.002
Shaviv, A. (2001). Advances in controlled release of fertilizers. Advances in Agronomy, 71, 1–49. doi: 10.1016/S0065-2113(01)71011-5
Singh, P. P., & Ambika. (2018). New Polymer Nanocomposites for Environmental Remediation. New Polymer Nanocomposites for Environmental Remediation, (1), 223–241.
Sudrajat, R., Anggorowati, & Setiawan, D. (2005). Manufacturing of activated charcoal from (Jatropha curcas L.) wood. Jurnal Penelitian Hasil Hutan, 23(4), 299–315.
Trenkel, M. E. (2010). Slow and Controlled Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Efficiency in Agriculture. In Climate Change 2013 - The Physical Science Basis (Vol. 53). doi: 10.1017/CBO9781107415324.004
Tsai, W. T., Chang, C. Y., & Lee, S. L. (1998). A low cost adsorbent from agricultural waste corn cob by zinc chloride activation. 64, 211–217. doi: 10.1016/S0960-8524(97)00168-5
Utomo, W. H., Widowati, Guritno, B., & Soehono, L. A. (2012). The Effect of Biochar on the Growth and N Fertilizer Requirement of Maize (Zea mays L.) in Green House Experiment. Journal of Agricultural Science, 4(5), 255–262. doi: 10.5539/jas.v4n5p255
Yang, H., Yan, R., Chin, T., Liang, D. T., Chen, H., & Zheng, C. (2004). Thermogravimetric Analysis−Fourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. Energy & Fuels, 18(6), 1814–1821. doi: 10.1021/ef030193m
Yang, R., Liu, G., Xu, X., Li, M., Zhang, J., & Hao, X. (2011). Surface texture, chemistry and adsorption properties of acid blue 9 of hemp (Cannabis sativa L.) bast-based activated carbon fibers prepared by phosphoric acid activation. Biomass and Bioenergy, 35(1), 437–445. doi: 10.1016/j.biombioe.2010.08.061
Zych, D. (2008). The Viability of Corn Cobs As a Bioenergy Feedstock. West Central Research and Outreach Center, 1–25.