Effect of bentonite application on the morphological, physiological, and biochemical behaviour of Triticum durum Desf and Triticum aestivum L. cultivated in saline soils

Mohammed El Amine Bachir Bouiadjra, Malika Ghellai, Ahmed Megharbi, Seher Bahar Aciksoz, Abdesselem Si Mohammed, José Galian

Abstract

Soil salinity represents a major constraint to agricultural productivity in arid and semi-arid regions, severely affecting cereal growth and yield. This study evaluated the effect of mineral soil amendments using two types of bentonite, sodium bentonite from Mostaganem (B-Na) and calcium bentonite from Maghnia (B-Ca), on the morphological, physiological, and biochemical responses of durum wheat Triticum durum Desf. And bread wheat Triticum aestivum L. cultivated in saline soil 19 dS.m⁻¹ from the Relizane region (western Algeria). Greenhouse experiments were conducted using bentonite doses of 5% and 10% (w/w) to assess plant growth parameters, relative water content (RWC), chlorophyll pigments, and soluble sugar levels. Both bentonites enhanced wheat performance under saline conditions, with the 5% dose producing the most favourable effects. Notably, 5% B-Na significantly increased RWC, chlorophyll concentration, and soluble sugar content in T. aestivum compared with the saline control. Excessive amendment (10%) did not yield further benefits. These findings suggest that moderate application of bentonite can effectively alleviate salinity stress and improve physiological performance in wheat. The study emphasizes the importance of optimizing bentonite type and dose based on soil characteristics and crop sensitivity to salinity.

Keywords

: chlorophyll;mineral amendment; morphological traits ;Soil salinity ;soluble sugars.

Full Text:

PDF

References

Ababsa, N., Boudjabi, S., & Chenchouni, H. (2023). Biochar Amendments Changed Soil Properties and Improved Cereal Crop Growth Under Salt Stress. Journal of Soil Science and Plant Nutrition, 23(4), 4912-4925. https://doi.org/10.1007/s42729-023-01453-7.

Abdeen, S. A. (2020). Biochar, Bentonite and Potassium Humate Effects on Saline Soil Properties and Nitrogen Loss. Annual Research & Review in Biology, 35(12), 45–55. https://doi.org/10.9734/arrb/2020/v35i1230310.

Abdelfattah, A., & Mostafa, H. (2024). Potential of Soil Conditioners to Mitigate Deficit Irrigation Impacts on Agricultural Crops: A Review. Water Resources Management, 38(8), 2961-2976. https://doi.org/10.1007/s11269-024-03800-4.

Abulimiti, M., Wang, J., Li, C., Zhang, Y., & Li, S. (2023). Bentonite could be an eco-friendly windbreak and sand-fixing material. Environmental Technology & Innovation, 29, 102981. https://doi.org/10.1016/j.eti.2022.102981.

Al-Huqail, A. A., Aref, N. M. A., Khan, F., Sobhy, S. E., Hafez, E. E., Khalifa, A. M., & Saad-Allah, K. M. (2024). Azolla filiculoides extract improved salt tolerance in wheat (Triticum aestivum L.) is associated with prompting osmostasis, antioxidant potential and stress-interrelated genes. Scientific Reports, 14(1), 11100. https://doi.org/10.1038/s41598-024-61155-7.

Al Khateeb, W., Muhaidat, R., Alahmed, S., Al Zoubi, M. S., Al-Batayneh, K. M., El-Oqlah, A., . . . Alkaraki, A. K. (2020). Heat shock proteins gene expression and physiological responses in durum wheat (Triticum durum) under salt stress. Physiology and Molecular Biology of Plants, 26(8), 1599-1608. https://doi.org/10.1007/s12298-020-00850-x.

Al Khatib, A., Al Hajaj, N., Khalaf, Y. B., Bsharat, S., Khasawneh, Y., Al Hwayan, M., . . . Karnwal, A. (2025). Sustainable wheat subspecies mixtures production by evaluating morphological traits and stability analysis of different varieties in different environments in Jordan. Sains Tanah Journal of Soil Science and Agroclimatology, 22(1), 12. https://doi.org/10.20961/stjssa.v22i1.91865.

Alavilli, H., Yolcu, S., Skorupa, M., Aciksoz, S. B., & Asif, M. (2023). Salt and drought stress-mitigating approaches in sugar beet (Beta vulgaris L.) to improve its performance and yield. Planta, 258(2), 30. https://doi.org/10.1007/s00425-023-04189-x.

Alhudhaibi, A. M., Ibrahim, M. A. R., Abd-Elaziz, S. M. S., Farag, H. R. M., Elsayed, S. M., Ibrahim, H. A., . . . Srour, H. A. M. (2024). Enhancing salt stress tolerance in wheat (Triticum aestivum) seedlings: insights from trehalose and mannitol. BMC Plant Biology, 24(1), 472. https://doi.org/10.1186/s12870-024-04964-2.

Atoui, A., Boudour, L., Chaib, G., & Boudersa, N. (2021). Evaluation of diversity in some genotypes of Algerian durum wheat using agronomical and biochemical markers. Biodiversitas Journal of Biological Diversity, 22(4). https://doi.org/10.13057/biodiv/d220449.

Aycan, M., Baslam, M., Mitsui, T., & Yildiz, M. (2024). Assessing Contrasting Wheat (Triticum aestivum L.) Cultivars Responsiveness to Salinity at the Seedling Stage and Screening of Tolerance Marker Traits. Journal of Plant Growth Regulation, 43(8), 2646-2666. https://doi.org/10.1007/s00344-024-11295-x.

Bandian, L., Nemati, H., & Moghaddam, M. (2019). Effects of Bentonite Application and Urea Fertilization Time on Growth, Development and Nitrate Accumulation in Spinach (Spinacia oleraceae L.). Communications in Soil Science and Plant Analysis, 50(1), 1-9. https://doi.org/10.1080/00103624.2018.1538373.

Beig, A. V. G., Neamati, S., Tehranifar, A., & Emami, H. (2015). Effects of A200 superabsorbent, bentonite and water stress on physiological traits and vitamin C of lettuce under greenhouse cultivation. Journal of Science and Technology of Greenhouse Culture, 6(1). https://jspi.iut.ac.ir/article-1-954-en.html.

Bellatreche, A., Mnasri, S. R., Ben Naceur, M., & Gaouar, S. S. B. (2019). Study of the Molecular Biodiversity of the Saharan Bread Wheat in Algeria. Cereal Research Communications Cereal Research Communications, 47(4), 724-739. https://doi.org/10.1556/0806.47.2019.39.

Bellil, I., Hamdi, O., Benbelkacem, A., & Khelifi, D. (2019). The Genetic Potential of a Germplasm of Interspecific Crosses between Durum Wheats (Triticum turgidum L. ssp. durum (Desf.) Husn.) and their Relatives (T. dicoccum Schübl. and T. polonicum L.) in Five Glutenin Loci. Cereal Research Communications Cereal Research Communications, 47(4), 678-688. https://doi.org/10.1556/0806.47.2019.33.

Benidire, L., El Khalloufi, F., Oufdou, K., Barakat, M., Tulumello, J., Ortet, P., . . . Achouak, W. (2020). Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Science of The Total Environment, 729, 139020. https://doi.org/10.1016/j.scitotenv.2020.139020.

Boudiar, R., Mekhlouf, A., Bachir, A., Rouabhi, A., & Igartua, E. (2019). Assessment of early drought tolerance of algerian durum wheat reveals superiority of landraces. Egyptian Journal of Agronomy, 41(3), 275-292. https://doi.org/10.21608/agro.2019.17341.1182.

Bushron, R., Hanuf, A. A., Yulianto, A. T., Lutfi, M. W., Yunita, D. M., Suntari, R., & Soemarno, S. (2025). Soil nutrient improvement with organic amendments: a basis for lemon orchard management. Sains Tanah Journal of Soil Science and Agroclimatology, 22(2), 10. https://doi.org/10.20961/stjssa.v22i2.99868.

Chahal, G. K., Kaur, A., & Ghai, N. (2022). Mitigation of salt stress with Azospirillium and Azotobacter inoculation in maize (Zea mays L.). Cereal Research Communications, 50(4), 915-927. https://doi.org/10.1007/s42976-022-00252-7.

Chaurasia, S. (2024). Identification of salt-tolerant wheat genotypes (Triticum aestivum L.) through physiological and ionic studies under salinity stress. Journal of Crop Science and Biotechnology, 27(3), 273-285. https://doi.org/10.1007/s12892-023-00229-w.

Daniels, K. A., Graham, C. C., Wiseall, A. C., Harrington, J. F., & Sellin, P. (2024). Bentonite homogenisation and swelling: The effect of salinity. Applied Clay Science, 247, 107200. https://doi.org/10.1016/j.clay.2023.107200.

El-Etr, W., & Hassan, W. (2017). Effect of Potassium Humate and Bentonite on some Soil Chemical Properties under Different Rates of Nitrogen Fertiliztion. Journal of Soil Sciences and Agricultural Engineering, 8(10), 539-544. https://doi.org/10.21608/jssae.2017.38070.

El-Gabiery, A. E., & Ata Allah, Y. F. A. (2017). Effect of Foliar Application with Bentonite on Growth and Productivity of Egyptian Cotton. Journal of Plant Production, 8(10), 1029-1035. https://doi.org/10.21608/jpp.2017.41081.

El-Ramady, H., Prokisch, J., Mansour, H., Bayoumi, Y. A., Shalaby, T. A., Veres, S., & Brevik, E. C. (2024). Review of Crop Response to Soil Salinity Stress: Possible Approaches from Leaching to Nano-Management. Soil Systems, 8(1), 11. https://doi.org/10.3390/soilsystems8010011.

El Amine, B. B. M., Malika, G., & Moulay, B. (2020). Contribution to the study of the biochemical parameters of Vicia faba L. cultivated under salinity conditions and in the presence of bentonite. Plant Archives, 20, 4827-4832. https://www.plantarchives.org/20-2/4827-4832%20(6276).pdf.

FAO. (2023). World Food Situation. Food and Agriculture Organization of the United Nations. Retrieved 13 September 2023 from https://www.fao.org/worldfoodsituation/csdb/en/

Farooq, M., Zahra, N., Ullah, A., Nadeem, F., Rehman, A., Kapoor, R., . . . Siddique, K. H. M. (2024). Salt Stress in Wheat: Effects, Tolerance Mechanisms, and Management. Journal of Soil Science and Plant Nutrition, 24(4), 8151-8173. https://doi.org/10.1007/s42729-024-02104-1.

Fellahi, Z. E. A., Boubellouta, T., Bentouati, I., Safsaf, H., Hannachi, A., Utkina, A. O., & Rebouh, N. Y. (2024). Hydroponic Screening at Early Seedling Stage Identified Sources of Salinity Tolerance in Wheat (Triticum aestivum L.) Crop. Agronomy, 14(5), 984. https://doi.org/10.3390/agronomy14050984.

Fernandes, E. F. d. S., Aguiar, E. S., de Lima, É. K. A., Alves, K. E. d. S., Farias, J. R. d. S., Almeida, Y. B. A. d., . . . Santos, V. B. d. (2023). Bentonite clay: a brief review of properties and applications. Research, Society and Development, 12(2), e7912239917. https://doi.org/10.33448/rsd-v12i2.39917.

Garbowski, T., Bar-Michalczyk, D., Charazińska, S., Grabowska-Polanowska, B., Kowalczyk, A., & Lochyński, P. (2023). An overview of natural soil amendments in agriculture. Soil and Tillage Research, 225, 105462. https://doi.org/10.1016/j.still.2022.105462.

Hmissi, M., Krouma, A., García-Sánchez, F., & Chaieb, M. (2024). Potential of Seed Halopriming in the Mitigation of Salinity Stress during Germination and Seedling Establishment in Durum Wheat (Triticum durum Desf.). Plants, 13(1), 66. https://doi.org/10.3390/plants13010066.

Hoang, N. K., Phuong, N. V., & Long, L. B. (2023). Potential solution in sustainable agriculture: improving the pH and pH buffering capacity of gray soil Acrisol from Cu Chi, Ho Chi Minh City, Vietnam using biochar combined with bentonite. Sains Tanah Journal of Soil Science and Agroclimatology, 20(1), 7. https://doi.org/10.20961/stjssa.v20i1.63685.

Horchani, F., Bouazzi, A., Bouallegue, A., & Abbes, Z. (2025). Effects of supplemental potassium on growth, nutritional status and antioxidant defense system of wheat (Triticum durum L.) under salt stress. Notulae Scientia Biologicae, 17(1), 12199. https://doi.org/10.55779/nsb17112199.

Idiart, A., Laviña, M., Cochepin, B., & Pasteau, A. (2020). Hydro-chemo-mechanical modelling of long-term evolution of bentonite swelling. Applied Clay Science, 195, 105717. https://doi.org/10.1016/j.clay.2020.105717.

Iqbal, R., Valipour, M., Ali, B., Zulfiqar, U., Aziz, U., Zaheer, M. S., . . . Farah, M. A. (2024). Maximizing wheat yield through soil quality enhancement: A combined approach with Azospirillum brasilense and bentonite. Plant Stress, 11, 100321. https://doi.org/10.1016/j.stress.2023.100321.

Jia, P., Melnyk, A., Li, L., Kong, X., Dai, H., & Zhang, Z. (2022). Differential adaptation of roots and shoots to salt stress correlates with the antioxidant capacity in mustard (Brassica juncea L.). Pak. J. Bot, 54(6), 2001-2011. https://doi.org/10.30848/PJB2022-6(32).

Kang, S.-M., Shaffique, S., Injamum-Ul-Hoque, M., Gam, H.-J., Woo, J.-I., Jeon, J. R., . . . Mun, B.-G. (2024). Deciphering Whether Illite, a Natural Clay Mineral, Alleviates Cadmium Stress in Glycine max Plants via Modulation of Phytohormones and Endogenous Antioxidant Defense System. Sustainability, 16(22), 10039. https://doi.org/10.3390/su162210039.

Kenawy, E.-R., Rashad, M., Hosny, A., Shendy, S., Gad, D., & Saad-Allah, K. M. (2022). Enhancement of growth and physiological traits under drought stress in Faba bean (Vicia faba L.) using nanocomposite. Journal of Plant Interactions, 17(1), 404-418. https://doi.org/10.1080/17429145.2022.2038293.

Kumar, N. V., Pallavi, K. N., Rajput, P., Bhargavi, B., Chandra, M. S., Chandana, P., . . . Rajput, V. D. (2025). Nano-Biochar: A promising tool for sustainable agriculture under climate change era. Sains Tanah Journal of Soil Science and Agroclimatology, 22(1), 18. https://doi.org/10.20961/stjssa.v22i1.100809.

Meena, S., Chobhe, K. A., Datta, S., Manjaiah, K., & Sharma, V. (2023). Effect of modified clay minerals and redmud on the bioavailability of arsenic. Annals of Plant and Soil Research, 25(2), 280-284. https://doi.org/10.47815/apsr.2023.10267.

Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., & Liu, J. (2018). Effects of a one-time application of bentonite on soil enzymes in a semi-arid region. Canadian Journal of Soil Science, 98(3), 542-555. https://doi.org/10.1139/cjss-2018-0011.

Mi, J., Gregorich, E. G., Xu, S., McLaughlin, N. B., Ma, B., & Liu, J. (2021). Changes in soil biochemical properties following application of bentonite as a soil amendment. European Journal of Soil Biology, 102, 103251. https://doi.org/10.1016/j.ejsobi.2020.103251.

Mohammadifard, F., Tarakemeh, A., Moghaddam, M., & Zim, M. (2022). Bentonite Mitigates the Adverse Effects of Drought Stress in Fenugreek (Trigonella foenum-graecum L.). Journal of Soil Science and Plant Nutrition, 22(1), 1098-1111. https://doi.org/10.1007/s42729-021-00718-3.

Mohawesh, O., & Durner, W. (2019). Effects of Bentonite, Hydrogel and Biochar Amendments on Soil Hydraulic Properties from Saturation to Oven Dryness. Pedosphere, 29(5), 598-607. https://doi.org/10.1016/S1002-0160(17)60426-0.

Moustafa, E. S. A., Ali, M. M. A., Kamara, M. M., Awad, M. F., Hassanin, A. A., & Mansour, E. (2021). Field Screening of Wheat Advanced Lines for Salinity Tolerance. Agronomy, 11(2), 281. https://doi.org/10.3390/agronomy11020281.

Muhammad, N., & Siddiqua, S. (2022). Calcium bentonite vs sodium bentonite: The potential of calcium bentonite for soil foundation. Materials Today: Proceedings, 48, 822-827. https://doi.org/10.1016/j.matpr.2021.02.386.

Neji, I., Rajhi, I., Baccouri, B., Barhoumi, F., Amri, M., & Mhadhbi, H. (2021). Leaf photosynthetic and biomass parameters related to the tolerance of Vicia faba L. cultivars to salinity stress. Euro-Mediterranean Journal for Environmental Integration, 6(1), 22. https://doi.org/10.1007/s41207-020-00221-8.

Ntanos, E., Kekelis, P., Assimakopoulou, A., Gasparatos, D., Denaxa, N.-K., Tsafouros, A., & Roussos, P. A. (2021). Amelioration Effects against Salinity Stress in Strawberry by Bentonite–Zeolite Mixture, Glycine Betaine, and Bacillus amyloliquefaciens in Terms of Plant Growth, Nutrient Content, Soil Properties, Yield, and Fruit Quality Characteristics. Applied Sciences, 11(19), 8796. https://doi.org/10.3390/app11198796.

Omrani, S., Arzani, A., Esmaeilzadeh Moghaddam, M., & Mahlooji, M. (2022). Genetic analysis of salinity tolerance in wheat (Triticum aestivum L.). PLOS ONE, 17(3), e0265520. https://doi.org/10.1371/journal.pone.0265520.

Puccio, G., Ingraffia, R., Mercati, F., Amato, G., Giambalvo, D., Martinelli, F., . . . Frenda, A. S. (2023). Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Scientific Reports, 13(1), 116. https://doi.org/10.1038/s41598-022-26903-7.

Rahmani, A., Hazzab, A., Aimer, H., Ghenaim, A., & Terfous, A. (2020). Improvement of Physical-Chemical and Rheological Properties of Ghardaïa Loess (Southern Algeria) Using Bentonite Clay and Lime. Clays and Clay Minerals, 68(5), 499-512. https://doi.org/10.1007/s42860-020-00092-8.

Ren, M., Zhao, P., Cui, X., Wang, C., Zhang, Y., Guo, L., . . . Xu, C. (2024). Enhanced fertilizer utilization and heavy metals immobilization by ball-milling bentonite with NH4Cl: Experiments and DFT calculations. Journal of Hazardous Materials, 466, 133616. https://doi.org/10.1016/j.jhazmat.2024.133616.

Saeedi, R., Seyedi, A., Esmaeilizadeh, M., Seyedi, N., & Zahedi, S. M. (2025). Efficiency of Nanostructures Containing Chitosan-Selenium in Grafted Citrus Seedlings Under Salinity Stress: Element Uptake, Biochemical and Morphological Changes. Journal of Soil Science and Plant Nutrition, 25(1), 1813-1829. https://doi.org/10.1007/s42729-025-02239-9.

Salim, M. A. (2023). Effect of Glomus manihotis inoculation and salt stress on antioxidant and biochemical properties of Chia (Salvia hispanica L.). Sains Tanah Journal of Soil Science and Agroclimatology, 20(2), 7. https://doi.org/10.20961/stjssa.v20i2.66681.

Scippa, G. S., Di Michele, M., Onelli, E., Patrignani, G., Chiatante, D., & Bray, E. A. (2004). The histone‐like protein H1‐S and the response of tomato leaves to water deficit. Journal of Experimental Botany, 55(394), 99-109. https://doi.org/10.1093/jxb/erh022.

Shahad, R. F., & Hamid, M. M. (2025). Impact of Bentonite and Humic Acid on the Growth and Flowering of Catharanthus roseus L. in Sandy Soil. Journal of Environmental & Earth Sciences, 7(1), 157-166. https://doi.org/10.30564/jees.v7i1.7368.

Shahkolaie, S. S., Baranimotlagh, M., Dordipour, E., & Khormali, F. (2020). Effects of inorganic and organic amendments on physiological parameters and antioxidant enzymes activities in Zea mays L. from a cadmium-contaminated calcareous soil. South African Journal of Botany, 128, 132-140. https://doi.org/10.1016/j.sajb.2019.10.007.

Shahzadi, A., Noreen, Z., Alamery, S., Zafar, F., Haroon, A., Rashid, M., . . . Fiaz, S. (2024). Effects of biochar on growth and yield of Wheat (Triticum aestivum L.) under salt stress. Scientific Reports, 14(1), 20024. https://doi.org/10.1038/s41598-024-70917-2.

Shalaby, O. A. (2024). Moringa leaf extract increases tolerance to salt stress, promotes growth, increases yield, and reduces nitrate concentration in lettuce plants. Scientia Horticulturae, 325, 112654. https://doi.org/10.1016/j.scienta.2023.112654.

Shalaby, O. A. (2025). Iodine application induces the antioxidant defense system, alleviates salt stress, reduces nitrate content, and increases the nutritional value of lettuce plants. Functional Plant Biology, 52(6). https://doi.org/10.1071/fp24273.

Shao, Y., An, P., Feng, X., Muhammad, I., Otie, V., Li, W., . . . Qiman, Y. (2021). Differential responses of roots for varying tolerance to salinity stress in wheat with special reference to elasticity. Plant Growth Regulation, 94(2), 183-193. https://doi.org/10.1007/s10725-021-00707-7.

Shen, F., Jiao, Q., Zhang, J., Fan, L., Yu, P., Liu, D., . . . Liu, H. (2024). Effect of Exogenous Chitosan on Physiological Characteristics, Photosynthetic Parameters, and Antioxidant Systems of Maize Seedlings Under Salt Stress. Journal of Soil Science and Plant Nutrition, 24(4), 7024-7041. https://doi.org/10.1007/s42729-024-02021-3.

Souana, K., Taïbi, K., Ait Abderrahim, L., Amirat, M., Achir, M., Boussaid, M., & Mulet, J. M. (2020). Salt-tolerance in Vicia faba L. is mitigated by the capacity of salicylic acid to improve photosynthesis and antioxidant response. Scientia Horticulturae, 273, 109641. https://doi.org/10.1016/j.scienta.2020.109641.

Souri, B., & Sayadi, Z. (2021). Efficiency of Sulfur-Bentonite Granules to Improve Uptake of Nutrient Elements by the Crop Plant Cultivated in Calcareous Soil. Communications in Soil Science and Plant Analysis, 52(20), 2414-2430. https://doi.org/10.1080/00103624.2021.1928173.

Tadesse, S. H. (2022). Application of Ethiopian bentonite for water treatment containing zinc. Emerging Contaminants, 8, 113-122. https://doi.org/10.1016/j.emcon.2022.02.002.

Trivellini, A., Carmassi, G., Scatena, G., Vernieri, P., & Ferrante, A. (2023). Molecular and physiological responses to salt stress in salinity-sensitive and tolerant Hibiscus rosa-sinensis cultivars. Molecular Horticulture, 3(1), 28. https://doi.org/10.1186/s43897-023-00075-y.

Tsialtas, J. T., Theologidou, G. S., & Karaoglanidis, G. S. (2018). Effects of pyraclostrobin on leaf diseases, leaf physiology, yield and quality of durum wheat under Mediterranean conditions. Crop Protection, 113, 48-55. https://doi.org/10.1016/j.cropro.2018.07.008.

Turki, N., Shehzad, T., Elbok, S., & Kazutoshi, O. (2024). The Impact of Salinity on the Productivity and Quality of Durum and bread Wheat. Journal of Oasis Agriculture and Sustainable Development, 6(02), 56-60. https://doi.org/10.56027/JOASD212024.

Vasilik, M. P., Belova, N. I., Lazareva, E. M., Kononenko, N. V., & Fedoreyeva, L. I. (2024). Salt Tolerance Assessment in Triticum Aestivum and Triticum Durum. Front. Biosci. (Landmark Ed), 29(4). https://doi.org/10.31083/j.fbl2904150.

Weijing, L., Jiaxi, T., Yu, L., Sizhu, S., Xiaoyu, J., Liyu, H., . . . Miaomiao, H. (2025). Biochar and bentonite application improves aeolian sandy soil health and enhances soil carbon sequestration and emission reduction potential. Scientific Reports, 15(1), 2205. https://doi.org/10.1038/s41598-025-86636-1.

Younas, T., Cabello, G. G. C., Taype, M. A., Cardenas, J. A. L., Trujillo, P. D. C., Salas-Contreras, W. H., . . . Gondal, A. H. (2022). Conditioning of desert sandy soil and investigation of the ameliorative effects of poultry manure and bentonite treatment rate on plant growth. Brazilian Journal of Biology, 82. https://doi.org/10.1590/1519-6984.269137.

Zahra, N., Raza, Z. A., & Mahmood, S. (2020). Effect of Salinity Stress on Various Growth and Physiological Attributes of Two Contrasting Maize Genotypes. Brazilian Archives of Biology and Technology, 63. https://doi.org/10.1590/1678-4324-2020200072.

Zhang, B., Zhu, W., Hou, R., Yue, Y., Feng, J., Ishag, A., . . . Sun, Y. (2024). Recent advances of application of bentonite-based composites in the environmental remediation. Journal of Environmental Management, 362, 121341. https://doi.org/10.1016/j.jenvman.2024.121341.

Zhou, L., Xu, S.-t., Monreal, C. M., McLaughlin, N. B., Zhao, B.-p., Liu, J.-h., & Hao, G.-c. (2022). Bentonite-humic acid improves soil organic carbon, microbial biomass, enzyme activities and grain quality in a sandy soil cropped to maize (Zea mays L.) in a semi-arid region. Journal of Integrative Agriculture, 21(1), 208-221. https://doi.org/10.1016/S2095-3119(20)63574-2.

Zulqurnain Haider, M., Hussain, S., Muhammad Adnan Ramzani, P., Iqbal, M., Iqbal, M., Shahzad, T., . . . Mahmood, F. (2019). Bentonite and Biochar Mitigate Pb Toxicity in Pisum sativum by Reducing Plant Oxidative Stress and Pb Translocation. Plants, 8(12), 571. https://doi.org/10.3390/plants8120571.

Refbacks

  • There are currently no refbacks.