Keakuratan Hasil Terjemahan Frasa dan Nomina Dari Mesin Penerjemah Atas Artikel Opini Media Massa

La Ode Muhammad Idrus Hamid, Yumna Rasyid, Ratna Dewanti

Abstract

This study aims to explore and evaluate the accuracy of phrase and noun translations by machine translators in the context of mass media opinion articles. The research employs a qualitative approach with content analysis. Generally, the qualitative approach involves purposeful sampling, open-ended data collection, text or image analysis, presenting information in the form of visuals and tables, and personal interpretation of the findings. The results of this study reveal several inaccuracies in translations produced by Google Translate, Microsoft Translator, and DeepL Translator. Therefore, further evaluation and precise word choices are necessary to ensure better translation accuracy.

Keywords

Google Translation; Microsoft Translation; Deepl Translation; Terjemahan; Nomina

Full Text:

PDF

References

Almahasees, Z. M. (2018). Assessment of Google and Microsoft Bing translation of journalistic texts. International Journal of Languages, Literature and Linguistics, 4(3), 231-235. doi: 10.18178/ijlll.2018.4.3.178

Amar, N. (2013). Tingkat Keakuratan Terjemahan Bahasa Inggris ke Bahasa Indonesia oleh Google Translate. Madah: Jurnal Bahasa dan Sastra, 4(1), 82-93. https://doi.org/10.31503/madah.v4i1.152

Baker, Mona. 1992. In Other Words: A Coursebook on Translation. London: Routledge

Braun, V., & Clarke, V. (2006). Using thematic analysis in psychology. Qualitative Research in Psychology, 3(2), 77-101.

Brown, P. F., Lai, J. C., & Mercer, R. L. (1993). Aligning sentences in parallel corpora. In Proceedings of the 31st annual meeting on Association for Computational Linguistics (pp. 169-176).

Chen, X., Huang, X., & Le, Q. V. (2020). A comprehensive survey of neural machine translation. IEEE Transactions on Neural Networks and Learning Systems, 31(11), 4567-4599.

Creswell, John. (2013). Research Desain, Pendekatan Kualitatif, Kuantitatif, dan Mixed. Terjemahan Achmad Fawaid. Yogyakarta: Pustaka Pelajar

Larson Mildred, L. 1984. Meaning Based Translation: A Guide to Cross- Language quivalence. New York: Univ Press.

Li, H., Graesser, A. C., & Cai, Z. (2014, May). Comparison of Google translation with human translation. In the twenty-seventh international flairs conference.

Li, S., & Liang, B. (2019). A survey on deep learning for machine translation. Neurocomputing, 396, 405-417.

Liu, Y., Wang, H., & Lin, S. (2019). Recent advances in neural machine translation: A survey. Artificial Intelligence Review, 52(1), 233-260.

Mayring, P. (2000). Qualitative content analysis. Forum: Qualitative Social Research, 1(2), Art. 20.

Nababan, M.R. 2008. Teori Menerjemahkan Bahasa Inggris. Yogyakarta: Pustaka Pelajar

Putri, T. A. S., & Nugroho, R. A. (2022, June). Translation Techniques Used by Google Translate and Microsoft Translator in Translating Abstract Text. In UNCLLE (Undergraduate Conference on Language, Literature, and Culture) (Vol. 2, No. 01, pp. 182-193).

Smith, A., Johnson, B., & Lee, C. (2018). Challenges in machine translation: A review. Journal of Language Technology and Linguistics, 25(2), 123-140.

Ullah, Z., Bibi, A., Ali, A., & Bibi, H. (2023). Comparative Study of Human Translation and Google Translation: Error Analysis of English into Pashto. Harf-o-Sukhan, 7(3), 38-47.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

Waluya, Asep. 2011. Skripsi. Analisis Kesalahan Penerjemahan Teks Jurnalistik. Unpublished Thesis

Wang, H., Zhao, T., & Liu, J. (2017). Neural machine translation: A survey. IEEE Transactions on Neural Networks and Learning Systems, 28(10), 2376-2390.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M., Macherey, W., ... & Klingner, J. (2018). Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Refbacks

  • There are currently no refbacks.