Implementasi Deep Learning Menggunakan Metode Convolutional Neural Network untuk Mendeteksi Kehalaln pada Kosmetik

Hafsah Qonita, Pringgo Widyo Laksono, Yusuf Priyandari

Abstract

The growth rate of the cosmetics industry shows good development, reaching 9.39% in 2020. With so many cosmetic products in the market, consumers must be more careful in choosing the cosmetic products. In addition to the safety factor, the halalness of cosmetics also needs to be considered, especially for Muslim consumers. This research aims to create a halal detection model in cosmetics by implementing one of the deep learning methods, namely convolutional neural network (CNN). .Previous research has successfully created a halal detection model on Korean cosmetics using CNN with an accuracy rate of 95.56%. This research intends to develop previous research by adding classes and the number of datasets. CNN will be used to create a halal detection model in cosmetics by learning the input features in the form of the image of cosmetic ingredient to determine its halalness. Classification is done based on two classes, which are Halal and Shubhat. The results show that the CNN model gets an accuracy value of 98.66% with a loss of 0.0615 in classifying the halalness of cosmetics. Model testing using the testing dataset gets an accuracy value of 98.67%. The F1-score value in each class is 98.66% for the halal class and 98.67 for the shubhat class. The CNN model that has been created is appropriate because it shows high accuracy and low loss on training, validation, and testing data without experiencing overfitting or underfitting,

Keywords

Cosmetic, Halal, Convolutional Neural Network

References

Adi Nugroho, P., Fenriana, I., & Arijanto, R. (2020). IMPLEMENTASI DEEP LEARNING MENGGUNAKAN CONVOLUTIONAL NEURAL NETWORK ( CNN ) PADA EKSPRESI MANUSIA. JURNAL ALGOR, 2(1). https://jurnal.buddhidharma.ac.id/index.php/algor/index Nadha, C. (2021, November 4). Awas, Hindari Kosmetik Haram dan Najis. LPPOM MUI. https://halalmui.org/awas-hindari-kosmetik-haram-dan-najis/ Heidari, M., & Rafatirad, S. (2020). Using Transfer Learning Approach to Implement Convolutional Neural Network model to Recommend Airline Tickets by Using Online Reviews. Ilahiyah, S., & Nilogiri, A. (2018). Implementasi Deep Learning Pada Identifikasi Jenis Tumbuhan Berdasarkan Citra Daun Menggunakan Convolutional Neural Network. Jaswir, I., Rahayu, El. A., Yuliana, N. D., & Roswiem, A. P. (2020). DAFTAR REFERENSI BAHAN-BAHAN YANG MEMILIKI TITIK KRITIS HALAL DAN SUBSTITUSI BAHAN NON-HALAL. Kementrian Perindustrian. (2021, June 1). Tingkatkan Daya Saing IKM Kosmetik, Kemenperin Gencarkan Restrukturisasi Mesin dan Peralatan. Kementrian Perindustrian Republik Indonesia. https://kemenperin.go.id/artikel/22550/Tingkatkan-Daya-Saing-IKM-Kosmetik,-Kemenperin-Gencarkan-Restrukturisasi-Mesin-dan-Peralatan Mahdiyyah, M., & Putriana, N. A. (2019). Analisis Kimia untuk Mendeteksi Kandungan Non-Halal pada Kosmetik. Farmasetika.Com (Online), 4(5). https://doi.org/10.24198/farmasetika.v4i5.23067 Matsuki. (2020, June 11). Menjadi Muslim, Menjadi Indonesia (Kilas Balik Indonesia Menjadi Bangsa Muslim Terbesar). Kementrian Agama Republik Indonesia. https://kemenag.go.id/opini/menjadi-muslim-menjadi-indonesia-kilas-balik-indonesia-menjadi-bangsa-muslim-terbesar-03w0yt Rachmawati, P. (2022, August 10). Kosmetik halal makin populer: bagaimana cara deteksi unsur haram dan seberapa besar pasarnya? https://theconversation.com/kosmetik-halal-makin-populer-bagaimana-cara-deteksi-unsur-haram-dan-seberapa-besar-pasarnya-185055 Ramdania, D. R., Aziz, R. M., Mulyana, E., Kaffah, F. M., Maylawati, D. S. A., Al-Amin, M. I., & Ramdhani, M. A. (2022). Convolutional Neural Network for Halal Detection of Korean Cosmetic Composition. Proceeding of 2022 8th International Conference on Wireless and Telematics, ICWT 2022. https://doi.org/10.1109/ICWT55831.2022.9935484 Sitepu, A. C., & SIgiro, M. (2021). ANALISIS FUNGSI AKTIVASI RELU DAN SIGMOID MENGGUNAKAN OPTIMIZER SGD DENGAN REPRESENTASI MSE PADA MODEL BACKPROPAGATION. Jurnal Teknik Informatika Universal. Stephen, Raymond, & Handri Santoso. (2019). APLIKASI CONVOLUTION NEURAL NETWORK UNTUK MENDETEKSI JENIS-JENIS SAMPAH. – Jurnal Sistem Informasi Dan Telematika. Yanti, I. (2018). Analisis Pengaruh Faktor Psikologis dan Religiusitas Perilaku Muslimah Kota Medan terhadap Konsumsi Kosmetik Halal dan Baik.

Refbacks

  • There are currently no refbacks.