Penentuan Rute Optimal Penyiraman Tanaman Kota Yogyakarta Menggunakan Genetic Algorithm

Wuri Isdianto, Utaminingsih Linarti

Abstract

Abstrak

Penyiraman  tanaman merupakan salah satu  aktivitas yang harus dilakukan oleh DLH Kota Yogyakarta untuk menjaga dan memelihara kelestarian lingkungan hidup. Pemilihan  rute penyiraman harus optimal, agar menghemat biaya operasional kendaraan. Tujuan penelitian ini yaitu menyelesaikan permasalahn rute penyiraman tanaman Kota Yogyakarta menggunakan Genetic Algorithm  (GA). Fungsi tujuan pada penelitian ini untuk meminimalkan total jarak dan total waktu tertempuh. Penelitian ini berhasil menyelesaian permasalahan rute penyiraman tanaman Kota Yogyakarta di Sektor 3 dengan menggunakan GA dan mampu memberikan solusi rute dengan dengan hasil yang lebih baik daripada rute saat ini. Dengan menggunakan rute usulan, diperoleh total jarak tertempuh sejauh 80.220 meter dan total waktu penyelesaian sebesar 1.056 menit. Terjadi penurunan total jarak tempuh sebesar 11,94 % dan penurunan total waktu tertempuh sebesar 2,88 % terhadap rute saat ini.

 

Kata kunci: Genetic Algorithm, DLH, Penyiraman Tanaman

 

Abstract

Watering plants is one of the activities that must be carried out by DLH Yogyakarta City to protect and preserve the environment. The selection of the watering route must be optimal, in order to save vehicle operating costs. The purpose of this research is to solve the problem of watering route for plants in Yogyakarta City using Genetic Algorithm (GA). The objective function in this study is to minimize the total distance and total time traveled. This study succeeded in solving the problem of the Yogyakarta City watering route in Sector 3 using GA and was able to provide route solutions with better results tan the current route. By using the proposed route,  the total distance covered is 80,220 meters and the total completion time is 1,056 minutes. There is a decrease in the total distance traveled by 11.94 % and a decrease in the total time traveled by 2.88% to the current route.

 

Keywords: Genetic Algorithm, DLH, Watering Plants

Keywords

Genetic Algorithm; DLH; Penyiraman Tanaman

References

Amri, M., Rahman, A., & Yuniarti, R. (2014). Penyelesaian Vehicle Routing Problem dengan Menggunakan Metode Nearest Neighbour ( Studi Kasus : MTP Nganjuk Distributor PT . Coca Cola ). Jurnal Rekayasa Dan Manajemen Sistem Industri, 2(1), 36–45.

Angelelli, E., & Speranza, M. G. (2002). The periodic vehicle routing problem with intermediate facilities. 137.

Archetti, C., Speranza, M. G., & Hertz, A. (2006). A tabu search algorithm for the split delivery vehicle routing problem. Transportation Science, 40(1), 64–73. https://doi.org/10.1287/trsc.1040.0103

Armandi, E., Purwani, A., & Linarti, U. (2019). Optimasi Rute Pengangkutan Sampah Kota Yogyakarta Menggunakan Hybrid Genetic Algorithm. Jurnal Ilmiah Teknik Industri, 18(2), 236–244. https://doi.org/10.23917/jiti.v18i2.8744

Arvianto, A., Setiawan, A. H., & Saptadi, S. (2014). Model Vehicle Routing Problem dengan Karakteristik Rute Majemuk, Multiple Time Windows, Multiple Products dan Heterogeneous Fleet untuk Depot Tunggal. Jurnal Teknik Industri, 16(2), 85–96. https://doi.org/10.9744/jti.16.2.83-94

Deng, M., Xiao, H. J., & Yang, F. M. (2006). Genetic algorithm for the open vehicle routing problem. Beijing Huagong Daxue Xuebao (Ziran Kexueban)/Journal of Beijing University of Chemical Technology (Natural Science Edition), 33(4), 84–87.

Gendreau, M., Laporte, G., Musaraganyi, C., & Taillard, É. D. (1999). A tabu search heuristic for the heterogeneous fleet vehicle routing problem. Computers and Operations Research, 26(12), 1153–1173. https://doi.org/10.1016/S0305-0548(98)00100-2

Hendrawan, B. E. (2007). Implementasi Algoritma Paralel Genetic Algorithm untuk Penyelesaian Heterogeneous Fleet Vehicle Routing Problem.

Indrawati, I., Eliyati, N., & Lukowi, A. (2016). Penentuan Rute Optimal pada Pengangkutan Sampah di Kota Palembang dengan Menggunakan Metode Saving Matrix. Jurnal Penelitian Sains, 18(3), 168493.

Mulloorakam, A. T., & Mathew Nidhiry, N. (2019). Combined Objective Optimization for Vehicle Routing Using Genetic Algorithm. Materials Today: Proceedings, 11, 891–902. https://doi.org/10.1016/j.matpr.2018.12.016

Pakusadewa, P. G., Dewi, C., & Wihandika, R. C. (2017). Penerapan Hibridisasi Algoritme Genetika dan Simulated Annealing untuk Optimasi Vehicle Routing Problem pada Kasus Pen .... Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer (J-PTIIK) Universitas Brawijaya, 2(February), 3215–3223.

Prins, C. (2002). Efficient Heuristics for the Heterogeneous Fleet Multitrip VRP with Application to a Large-Scale Real Case. Journal of Mathematical Modelling and Algorithms, 1(2), 135–150. https://doi.org/10.1023/A:1016516326823

Salaki, D. T. (2009). Penyelesaian Vehicle Routing Problem Menggunakan Beberapa Metode Heuristik.

Sari, V. A., & Sari, E. R. (2017). Tanaman Menggunakan Algoritma Artificial Immune System ( Ais ) Di Kota Yogyakarta. 281–288.

Surekha, P., & Sumathi, S. (2011). Solution To Multi-Depot Vehicle Routing Problem Using Genetic Algorithms. World Applied Programming, 13, 118–131. www.waprogramming.com

Toth, P., & Vigo, D. (2002). 1. An Overview of Vehicle Routing Problems. The Vehicle Routing Problem, 1–26. https://doi.org/10.1137/1.9780898718515.ch1

Wahyuningsih, S., Satyananda, D., Octoviana, L. T., Jurusan, R. N., Fmipa, M., & Malang, U. N. (n.d.). Vehicle Routing Problem with Time Windows Variants and its Application in Distribution Optimization. 24–35.

Wibisono, E. (2018). Logika Logistik (1st ed.). GRAHA ILMU.

Refbacks

  • There are currently no refbacks.