Analisis Visual dan Machine Learning untuk Mengukur Validitas Dokumen Akademik Perpustakaan: Studi pada Data Turnitin

Hesti Ari Wardani, Imam Yuadi

Abstract


The issue of plagiarism in academic works is a major concern in higher education as it can undermine academic integrity. This study aims to analyze the distribution of Turnitin results in academic library documents from various study programs at Universitas Nasional, Jakarta. Using a data visualization approach and machine learning algorithms, this research explores the relationship between Turnitin scores and document validity status. The methods used include data visualization through Scatter Plots, Violin Plots, and Box Plots, with these visualizations utilizing Orange Data Mining as the data processing method. Additionally, a logistic regression algorithm is applied to classify documents based on Turnitin scores. Furthermore, the Chi-Square statistical test is implemented to evaluate the significance of the relationship between Turnitin results and document validity status. The findings of this study indicate that Turnitin scores exhibit significant distribution differences among study programs, with notable disparities between valid and invalid documents. Documents from certain study programs tend to have dominant scores in the 20-50% range, which serves as a critical threshold in determining document validity. This study provides in-depth insights into the patterns of academic document validity and offers a data-driven approach to improving the quality of academic evaluation in higher education. Additionally, this research is expected to serve as a foundation for academic policies in strengthening plagiarism detection systems, increasing transparency in evaluation, and promoting the development of more accurate and efficient document validation methods. However, this study has limitations regarding the scope of data used, particularly in terms of study program representation and external factors that may influence Turnitin scores. Further research is needed to examine pedagogical aspects and academic policies that contribute to variations in Turnitin scores across different study programs.


Keywords


plagiarism; turnitin; data visualization; machine learning; document validity; higher education

Full Text:

PDF
rticle

References


Baayen, R. H. (2008). Analyzing Linguistic Data: A Practical Introduction to Statistics using R. Cambridge University Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer Science+Business Media, LLC.

Creswell, J. W., & Creswell, J. D. (2018). Research Design Fifth Edition: Qualitative, Quantitative, and Mixed Methods Approaches. SAGE Publications.

Cyber Library Universitas Nasional. (2023). Layanan Uji Turnitin Universitas Nasional. https://perpustakaan.unas.ac.id/Panduan-Uji-Turnitin/

Ghozali, I. (2018). Aplikasi analisis multivariate dengan program IBM SPSS 25 (Edisi 9). Badan Penerbit Universitas Diponegoro.

Sozon, M., Mohammad Alkharabsheh, O. H., Fong, P. W., & Chuan, S. B. (2024). Cheating and plagiarism in higher education institutions (HEIs): A literature review. F1000Research, 13, 788. https://doi.org/10.12688/f1000research.147140.2

Hartama, D. (2018). Analisa Visualisasi Data Akademik Menggunakan Tableau Big Data. Jurnal Riset Sistem Informasi Dan Teknik Informatika (JURASIK), 3, 46–55. http://dx.doi.org/10.30645/jurasik.v3i0.65

Hastie, T., Tibshirani, R., & Friedman, J. (2009). The Elements of Statistical Learning. Springers.

Howard, R. M. (1995). Plagiarisms, Authorships, and the Academic Death Penalty. https://doi.org/https://doi.org/10.2307/378403

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2021). An Introduction to Statistical Learning (Second). Springer.

Park, C. (2017). In other (people’s) words: Plagiarism by university students-literature and lessons. Academic Ethics, 28(5), 525–542. https://doi.org/10.4324/9781315263465-42

Permana, R. A., Priharsari, D., & Perdanakusuma, A. R. (2022). Analisis Penggunaan Software Turnitin Sebagai Alat Pendeteksi Plagiarisme. 6(11), 5446–5453. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/11903

Picorari, D. (2008). Academic Writing and Plagiarism. Internetarchivebooks.

Ramlan, Erwinsyahbana, T., & Hakim, N. (2017). Buku Malu Menjadi Plagiator. Intelgensia Media.

Risparyanto, A. (2020). Turnitin Sebagai Alat Deteksi Plagiarisme. UNILIB : Jurnal Perpustakaan, 11(2). https://doi.org/10.20885/unilib.vol11.iss2.art5

Santoso, S. (2020). Panduan lengkap SPSS 26. Elex Media Komputindo.

Saputra, I. (2023). Belajar Mudah Data Mining untuk Pemula. Informatika.

Sinaga, S. (2018). Penggunaan Aplikasi Turnitin Sebagai Sarana Cek Plagiarisme dalam Layanan Perpustakaan Universitas Ukrida. BIBLIOTIKA: Jurnal Kajian Perpustakaan dan Informasi, 2(2), 123-131. doi:http://dx.doi.org/10.17977/um008v2i22018p123

Sutrisno, E., Syafrizal, Ritnawati, Erdawaty, Rochmatika, E., Mahyuni, E. T., Soetijono, I. K., Mayasari, E., Widodo, M. L., Yuniarti, E., Ma’rief, A. A., Hernovianty, F. R., & Simarmata, J. (2024). Plagiarisme dan Integritas Akademik. Yayasan Kita Menulis.

Witten, I. H. et al. (2011). Data Mining : Practical Machine Learning Tools and Techniques, Third Edition (Third). Morgan Kaufmann Publishers is an imprint of Elsevier.




DOI: https://doi.org/10.20961/jpi.v11i1.98828

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

 
Jurnal Pustaka Ilmiah is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.