### Normal Distribution Approximation through Binomial and Poisson Distribution

#### Abstract

Abstract: The purpose of this research is to prove the approach of normal distribution through binomial distribution and Poisson distribution both theoretically and inductively. The research method used is a literature study by collecting various literature related to the problem under study. Theoretically, the binomial distribution and the Poisson distribution will be closer to the normal distribution when 𝑛 approaches infinity or in other words the limit 𝑛 towards infinity of the binomial distribution or Poisson distribution will approach the normal distribution. Theoretically, this approach can be proven by the method of generating moments. While inductively, the approach can be seen from the polygons of the binomial distribution and Poisson distribution which will increasingly approach the normal curve when the amount of data is very large approaching infinity.

#### Keywords

approximation, normal distribution, binomial distribution, Poisson distribution, theoretical, inductive, moment generating method, polygon, normal curve

PDF

#### References

Budiyono. (2009). Statistika untuk Penelitian edisi ke 2. New York: Random House. Sudaryono. (2011). Statistika Probabilitas – Teori & Aplikasi. Tangerang: Andi Offset. Spiegel, Murray R., John, S. dan R, Alu, S. (1975). Schaum’s Outlines of Probabilitas dan Statistik Edisi Kedua. Terjemahan Refina, I. (2004). Jakarta: Penerbit Erlangga. Subagyo, Pangestu., dan Djarwanto. (2005). Statistika Induktif Edisi 5. Yogyakarta: BPFE-YOGYAKARTA. Triyanto. (2014). Teknik Analisis Data dengan Minitab. Surakarta: FKIP UNS. Bagui, S & Mehra, K. L. (2017). Convergence of Binomial to Normal: Multiple Proofs. International Mathematical Forum, Vol. 12, 402. https://doi.org/10.12988/imf.2017.7118. Bagui, S. C & Mehra, K, L. (2016). Convergences of Binomial, Poisson, Negative-Binomial, and Gamma to Normal Distribution: Moment Generating Functions Technique. American Journal of Mathematics and Statistics, 6(3), 117-118. https://doi.org/10.5923/j.ajms.20160603.05. Purcell, E. J., Dale, V., & Steven, E. R. Kalkulus Edisi Kedelapan Jilid 2. Terjemahan Julian, G. (2004). Jakarta: Penerbit Erlangga.

### Refbacks

• There are currently no refbacks.