Javanese Batik Motifs and Ornamentation as Objects of Aesthetics and Generative Art with Pseudo-Algorithm

Dewi Retno Sari Saputro, Yekti Widyaningsih, Antoni Wibowo

Abstract

The batik patterns that are known to be fractal are the reality that there are alternative perspectives that exist among Indonesian society and civilization which are unique relative to the general modern perspective. This uniqueness is important considering that fractals are a form of understanding geometry and system complexity. Pseudo-algorithm in batik is an ornamentation process: klowongan-isenharmonization which starts from the smallest fractional elements of batik motifs (fractals), has selfsimilarity and is carried out through iterative computational methods. Batik as a patterned aesthetic object has pseudo-algorithmic depiction rules that can be treated as a generative art form. Batik that can be developed as fractal batik is batik with geometric motifs. Fractals have initiated a change and presented scientific creativity and progressivity in several fields in the form of interdisciplinary. All computational patterns growth to find fractal character in batik can turn into the sources of creativity to create new motifs.

Keywords: Javanese batik, ornamentation, Aesthetic, pseudo algorithm

Full Text:

PDF

References

Aouidi, J. & Slimane, M.B. (2002). Multi-fractal formalism for quasi-self-similar functions, Journal of Statistical Physics, 108 (3/4). [BFI] Bandung Fe Institute. Fraktal batik komputasional Indonesia. https://fraktal.bandungfe.net [accessed on 27 April 2017]. Barnsley, M. (1988). Fractals everywhere. Academic Press. Inc.: New York. 129 Doellah, S. (1997). Batik: The impact of time and environment. Danar Hadi. Freeman, W.H., Peitgen, H-O., & Saupe, D. (1988). The science of fractal images. Springer-Verlag. Gustami. (1980). Nukilan seni ornamen Indonesia. STSRI Yogyakarta. Hariadi, Y., Lukman, M. & Haldani, A. (2007). Batik fractal: From traditional art to modern complexity. Proceeding Generative Art X Milan Italia. Hariadi, Y., Lukman, M. & Haldani, A. (2013). Batik fractal: Marriage of art and science, ITB Journal Vis Art & Desain, Vol. 4 No. 1 pp 84-93 Heurteaux, Y. & Jaffard, S. (2007). Multifractal analysis of images: New connexions between analysis and geometry, J. Byrnes (ed.), Imaging for Detection and Identification, pp. 169–194, Springer. Tirta I, Gareth L. Steen, Deborah M.U, & Mario A. (1996). Batik: a play of lights and shades. Volume 1, Gaya Favorit Press. KOMPAS. Mempopulerkan batik dengan hitungan Matematika. http://nasional.kompas.com/read/2008/09/10/09060274/ [Accesed in February 2017]. Malkevitch, J. (2003). Mathematics and art. Feature Column April 2003. American Mathematical Society. URL: http://www.ams.org/featurecolumn/archive/art1.html. Mandelbrot, B. (1982). The fractal geometry of nature. Penguin Weisstein, E. W. (2008). Peano curve. MathWorld--A Wolfram Web Resource. URL: http://mathworld.wolfram.com/PeanoCurve.html. Situngkir, H. (2005). What is the relatedness of mathematics and art and why we should care? BFI Working Paper Series WPK2005. Situngkir, H & R. Dahlan. (2009a). Fisika batik: Implementasi kreatif melalui sifat fraktal pada batik secara komputasional. Jakarta: PT. Gramedia Pustaka Utama. Situngkir, H & R. Dahlan. (2009b). Batik fraktal Jawa: Ketika sains dan tradisi saling menginspirasi. Majalah Gong, 116/X/2009. Bandung Fe Institute. Weisstein, E. W. (1999). MathWorld-A Wolfram web resource. URL: http://mathworld.wolfram.com/ Wells, D. (1991). The penguin dictionary of curious and interesting geometry. Wolfram, S. (2002). A new kind of science. Wolfram Media Inc

Refbacks

  • There are currently no refbacks.