Grouping Indonesian Province Farmers’ Term of Trade Using Dynamic Time Warping

Imtikhanah Anis Mahmudiati, Rohmatul Fajriyah

Abstract

This study employs dynamic time warping (DTW) to analyze the farmer’s terms of trade (FTT) across 34 provinces in Indonesia, aiming to identify patterns and cluster similarities in time series data. DTW is recognized for its effectiveness in measuring flexible similarities under time distortions, making it particularly suitable for time series classification across various fields. The FTT is utilized to assess farmers' purchasing power by comparing the prices they receive for their products to the prices they pay for goods and services. K-Medoid clustering techniques were applied to group provinces based on their DTW distances, revealing three distinct clusters. The silhouette score indicates that three clusters as the optimum cluster for the FTT data. The findings show that the first and third clusters have low mean of FTT and the second cluster has the highest mean FTT. These indicates disparities in farmers’ income and purchasing power across regions where the government needs to enhance agricultural strategies and improve economic conditions for farmers in the first and third clusters.

Keywords: Clustering; Dynamic Time Warping; Farmers Term of Trade; K-Medoid.

Full Text:

PDF

References

Statistics Indonesia, Statistik Nilai Tukar Petani 2023, vol. 30. Indonesia: Badan Pusat Statistik, 2023.

P. Senin, “Dynamic time warping algorithm review,” Science (80-. )., vol. 2007, no. December, pp. 1–23, 2008, [Online]. Available: http://129.173.35.31/~pf/Linguistique/Treillis/ReviewDTW.pdf.

B. D. Fulcher and N. S. Jones, “Highly comparative feature-based time-series classification,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 12, pp. 3026–3037, 2014, doi: 10.1109/TKDE.2014.2316504.

K. Bringmann, N. Fischer, I. van der Hoog, E. Kipouridis, T. Kociumaka, and E. Rotenberg, “Dynamic dynamic time warping,” Proc. Annu. ACM-SIAM Symp. Discret. Algorithms, vol. 2024-Janua, pp. 208–242, 2024, doi: 10.1137/1.9781611977912.10.

A. D. Munthe, “Penerapan clustering time series untuk menggerombolkan provinsi di indonesia berdasarkan nilai produksi padi,” J. Litbang Sukowati Media Penelit. dan Pengemb., vol. 2, no. 2, p. 11, 2019, doi: 10.32630/sukowati.v2i2.61.

I. S. Narendra and M. Muhajir, “Analysis of dynamic time warping in the development of gross regional domestic product Yogyakarta,” J. Ris. Inform., vol. 4, no. 4, pp. 397–406, 2022, doi: 10.34288/jri.v4i4.432.

D. Setiawan and A. Zahra, “Pengelompokan kemiskinan di Indonesia menggunakan time series based clustering,” Inferensi, vol. 6, no. 1, p. 83, 2023, doi: 10.12962/j27213862.v6i1.14969.

S. Putri, A. N., Satyahadewi, N., Aprizkiyandari, “Pengelompokan provinsi di Indonesia menggunakan time series clustering pada sektor ekspor nonmigas,” Jambura J. Math., vol. 6, no. 1, pp. 16–22, 2024, doi: https://doi.org/10.37905/jjom.v6i1.21921.

C. Dinata, D. Puspitaningrum, and E. Erna, “Implementasi teknik dynamic time warping (DTW) pada aplikasi speech to text,” J. Tek. Inform., vol. 10, no. 1, pp. 49–58, 2018, doi: 10.15408/jti.v10i1.6816.

C. Cindy, C. Cynthia, V. Vito, D. Sarwinda, B. D. Handari, and G. F. Hertono, “Cluster analysis on dengue incidence and weather data using k-medoids and fuzzy c-means clustering algorithms (case study: spread of dengue in the DKI Jakarta Province),” J. Math. Fundam. Sci., vol. 53, no. 3, pp. 466–486, 2021, doi: 10.5614/j.math.fund.sci.2021.53.3.9.

D. Miljkovic and P. Vatsa, “On the linkages between energy and agricultural commodity prices: A dynamic time warping analysis,” Int. Rev. Financ. Anal., vol. 90, no. July, 2023, doi: 10.1016/j.irfa.2023.102834.

R. A. J. and D. W. Wichern, Applied Multivariate Statistical Analysis, 6th ed. Upper Saddle River, 2007.

I. Ayundari, D. Statistika, F. Matematika, and S. Data, “Penentuan zona musim di Mojokerto,” vol. 2, no. 2, 2019.

D. Amelia, G. Kholijah, and U. Jambi, “Analisis cluster pengelompokan provinsi di Indonesia berdasarkan sub sektor nilai tukar petani,” J. Demogr. Soc. Transform., vol. 3, no. 1, pp. 1–12, 2023, [Online]. Available: https://www.researchgate.net/publication/378686148_Analisis_Cluster_Pengelompokan_Provinsi_di_Indonesia_Berdasarkan_Sub_Sektor_Nilai_Tukar_Petani.

S. H. Hastuti, W. P. Nurmayanti, and A. A. Saputri, “Penerapan metode clustering self organizing maps (SOM) dan k-affinity propagation (K-AP) dalam mengelompokkan nilai tukar petani di Indonesia 2022,” Var. J. Stat. Its Appl., vol. 5, no. 1, pp. 79–88, 2023, doi: 10.30598/variancevol5iss1page79-88.

M. M. Na’im, “Penggunaan k-means dalam pengelompokan provinsi di Indonesia berdasarkan ntp (nilai tukar petani),” Universitas Nahdlatul Ulama Sunan Giri, 2024.

L. P. W. Adnyani and P. R. Sihombing, “Analisis cluster time series dalam pengelompokan provinsi di Indonesia berdasarkan nilai PDRB,” J. Bayesian J. Ilm. Stat. dan Ekon., vol. 1, no. 1, pp. 47–54, 2021, doi: 10.46306/bay.v1i1.5.

E. Mizutani, & S. Dreyfus, “On using dynamic programming for time warping in pattern recognition,” Information Sciences, 580, 684-704, 2021. https://doi.org/10.1016/j.ins.2021.08.075

Y. Y. Yu, P. P. Wu, K. Mengersen, W. Hobbs, “Classifying ball trajectories in invasion sports using dynamic time warping: A basketball case study,” PLoS One, Oct 20;17(10):e0272848, 2022, doi: 10.1371/journal.pone.0272848.

S. Jiang, & Z. Chen, “Application of dynamic time warping optimization algorithm in speech recognition of machine translation,” Heliyon, 9(11), e21625, 2023, https://doi.org/10.1016/j.heliyon.2023.e21625

C. Niu, “The application of improved DTW algorithm in sports posture recognition,” Systems and Soft Computing, 6, 200163, 2024, https://doi.org/10.1016/j.sasc.2024.200163.

C. Serantoni, A. Riente, A. Abeltino, G. Bianchetti, M. Maria De Giulio, S. Salini, A. Russo, F. Landi, M. De Spirito, & G. Maulucci, “Integrating Dynamic Time Warping and K-means clustering for enhanced cardiovascular fitness assessment,” Biomedical Signal Processing and Control, 97, 106677, 2024, https://doi.org/10.1016/j.bspc.2024.106677

T. Watase, Y. Omiya, S. Tokuno, “Severity classification using dynamic time warping-based voice biomarkers for patients with covid-19: Feasibility Cross-Sectional Study,” JMIR Biomed Eng, Nov 6;8:e50924, 2023, doi: 10.2196/50924. PMID: 37982072; PMCID: PMC10631492.

S. Lee, “Application of dynamic time warping algorithm for pattern similarity of gait,” Journal of Exercise Rehabilitation, 15(4), 526, 2019, https://doi.org/10.12965/jer.1938384.192

S. K. Sharma, H. Phan, J. Lee, “An application study on road surface monitoring using DTW based image processing and ultrasonic sensors,” Appl. Sci., 10, 4490, 2020, https://doi.org/10.3390/app10134490

T. Han, Q. Peng, Z. Zhu, Y. Shen, H. Huang, & N. N. Abid, “A pattern representation of stock time series based on DTW,” Physica A: Statistical Mechanics and its Applications, 550, 124161, 2020, https://doi.org/10.1016/j.physa.2020.124161

C. A. Ratanamahatana, and E. Keogh, “Everything you know about dynamic time warping is wrong,” Third Workshop on Mining Temporal and Sequential Data, in conjunction with the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2004), August 22-25, 2004 - Seattle, WA, 2004.

Choi, Hyo-rim & Kim, Taeyong., “Modified dynamic time warping based on direction similarity for fast gesture recognition,” Mathematical Problems in Engineering, 1-9, 2018, 10.1155/2018/2404089.

H. Li, J. Liu, Z. Yang, R. W. Liu, K. Wu, & Y. Wan, “Adaptively constrained dynamic time warping for time series classification and clustering,” Information Sciences, Volume 534, Pages 97-116, 2020, https://doi.org/10.1016/j.ins.2020.04.009.

W. C. Hair, Joseph F., Anderson, Rolph E., Black, Multivariate Data Analysis, 7th ed. America: Pearson, 2014.

B. Malik, A., & Tuckfield, Applied unsupervised learning with R: Uncover hidden relationships and patterns with K-Means clustering, hierarchical clustering, and PCA. UK: y Packt Publishing Ltd., 2019.

N. F. Fahrudin and R. Rindiyani, “Comparison of k-medoids and k-means algorithms in segmenting customers based on RFM criteria,” E3S Web Conf., vol. 484, 2024, doi: 10.1051/e3sconf/202448402008.

R. Fajriyah, and A. M. Imtikhanah, Kesehatan Masyarakat Indonesia 2013 : SBRC Series Analisis Data Kesehatan 1.01. Edited by Winoto, Darmawan E. Eureka Media Aksara, 2023.

Refbacks

  • There are currently no refbacks.