Application of the Mixed Geographically Weighted Regression Model to Identify Influencing Factors for Literacy Development Index of Indonesian Society's in 2022

Zulhijrah Zulhijrah, Ruliana Ruliana, Aswi Aswi

Abstract

The mixed geographically weighted regression (MGWR) method is a combination of a linear regression model and a geographically weighted regression (GWR) model. The MGWR model can produce parameter estimates that have global parameter estimates, and other parameters that have local parameters according to the observation location. This method can be used in epidemiological studies that are influenced by spatial heterogeneity. The aim of this research is to determine and model the factors that influence the Community Literacy Development Index (CLDI) in Indonesia based on MGWR modeling. The data used in this research is CLDI data in Indonesia in 2022 along with the factors that are thought to influence it. The results of this research indicate that the MGWR model outperforms both the linear regression and GWR models, as it yields the lowest Akaike information criterion (AIC) value and an 𝑅² value of 96.54%. Based on the modeling results, several factors influencing CLDI were identified, including the percentage of libraries, the adequacy ratio of library collections, the average length of schooling, and the level of participation in organized learning.

 

Keywords: Literacy; literacy development index; mixed geographically weighted regression; spatial

Full Text:

PDF

References

R. Rintaningrum, “Explaining the important contribution of reading literacy to the country’s generations: Indonesian’s perspectives,” Int. J. Innov. Creat. Chang., vol. 5, no. 3, pp. 936–953, 2019, [Online]. Available: https://www.ijicc.net/images/Vol_5_Iss_3/Part_2_2020/5310_Ratna_2019_E_R.pdf

S. Nugrahanto and D. Zuchdi, “Indonesia PISA result and impact on the reading learning program in Indonesia,” Adv. Soc. Sci. Educ. Humanit. Res., vol. 297, no. 18, pp. 373–377, 2019, doi: 10.2991/icille-18.2019.77.

L. Tahmidaten and W. Krismanto, “Permasalahan budaya membaca di indonesia (studi pustaka tentang problematika & solusinya),” Sch. J. Pendidik. dan Kebud., vol. 10, no. 1, pp. 22–33, 2020, doi: 10.24246/j.js.2020.v10.i1.p22-33.

X. Yang, S. Huo, and X. Zhang, “Visual-spatial skills contribute to Chinese reading and arithmetic for different reasons: A three-wave longitudinal study,” J. Exp. Child Psychol., vol. 208, no. 42, pp. 1–16, 2021, doi: 10.1016/j.jecp.2021.105142.

A. Permatasari, “Membangun kualitas bangsa dengan budaya literasi,” in Prosiding Seminar Nasional Bulan Bahasa UNIB, 2015, pp. 146–156.

N. Kurniasih, “Revitalization of library space function in digital era: comparative study of library space in TEMPO’s Data and Analysis Center and Library of Universitas Indonesia,” in Proceedings of The 1st Biannual Congress of International Library, Archives and Information Science Discovery & Technology 2016, 2016, pp. 111–121.

W. Nashihuddin, “Peran perpustakaan sebagai media literasi digital masyarakat,” J. Polit. dan Sos. Kemasyarakatan, vol. 147, no. 2, pp. 1–6, 2020, doi: 10.13140/RG.2.2.28221.82407.

F. Shoimah, “Mengukur indeks pembangunan literasi masyarakat (IPLM) Kabupaten Probolinggo,” J. PANGRIPTA, vol. 6, no. 1, pp. 1164–1175, 2023.

D. Yu, Y. Zhang, X. Wu, D. Li, and G. Li, “The varying effects of accessing high-speed rail system on China’s county development: A geographically weighted panel regression analysis,” Land use policy, vol. 100, no. 5, pp. 1–11, 2021, doi: 10.1016/j.landusepol.2020.104935.

D. O. Hasibuan, R. D. Bekti, E. Sutanta, and I. W. J. Pradnyana, “Application of the geographically weighted regression method to the human development index and visualization on the Tableau Dashboard,” 3rd Int. Conf. Inf. Technol. Secur. Appl., vol. 3, no. 1, pp. 39–51, 2022.

D. R. S. Saputro, H. N. Astuti, P. Widyaningsih, S. Sutanto, and R. Setiyowati, “Characteristics of parameter mixed geographically weighted regression model: Global (a-group) and local (b-group),” J. Phys. Conf. Ser., vol. 1776, no. 1, pp. 1–7, 2021, doi: 10.1088/1742-6596/1776/1/012044.

F. Kusumaningati, J. Utomo, M. Zach, A. Puspitawati, and N. Chamidah, “Modeling of school participation rate for senior high school in Indonesia using mixed geographically weighted regression model,” in Proceedings ofthe 2nd International Conference Postgraduate School (ICPS), 2018, no. Icps, pp. 939–943. doi: 10.5220/0007554409390943.

A. Hapsery and D. Trishnanti, “Aplikasi geographically weighted regression (gwr) untuk pemetaan faktor yang mepengaruhi indeks aktivitas literasi membaca di Indonesia,” J. Ris. dan Apl. Mat., vol. 05, no. 02, pp. 80–91, 2021.

M. A. Tiro, Analisis Korelasi dan Regresi, Edisi Ketiga. Makassar: Andira Publisher, 2010.

A. Quraisy, “Normalitas data menggunakan Uji Kolmogorov-Smirnov dan Saphiro-Wilk,” J. Heal. Educ. Econ. Sci. Technol., vol. 3, no. 1, pp. 7–11, 2020.

Yuliana and D. R. S. Saputro, “Algoritme least angle regression untuk model geographically weighted least absolute shrinkage and selection operator,” Semin. Mat. dan Pendidik. Mat. UNY, pp. 139–144, 2017.

J. Tang, F. Gao, F. Liu, C. Han, and J. Lee, “Spatial heterogeneity analysis of macro-level crashes using geographically weighted Poisson quantile regression,” Accid. Anal. Prev., vol. 148, no. 4, pp. 1–20, 2020, doi: 10.1016/j.aap.2020.105833.

S. Kartika and G. Kholijah, “Penggunaan metode geograhically weighted regression (gwr) untuk mengestimasi faktor dominan yang mempengaruhi penduduk miskin di Provinsi Jambi,” J. Mat. Theory Appl., vol. 2, no. 2, pp. 37–45, 2020, [Online]. Available: https://ojs.unsulbar.ac.id/index.php/Mathematics/article/view/998

X. Xu, X. Luo, C. Ma, and D. Xiao, “Spatial-temporal analysis of pedestrian injury severity with geographically and temporally weighted regression model in Hong Kong,” Transp. Res. Part F Traffic Psychol. Behav., vol. 69, no. 2, pp. 286–300, 2020, doi: 10.1016/j.trf.2020.02.003.

L. Anselin, Spatial Econometrics: Methods and Models, vol. 85, no. 411. 1988. doi: 10.2307/2290042.

D. W. S. Yusuf, E. M. P. Hermanto, and W. Pramesti, “Pemodelan geographically weighted regression (GWR) pada persentase kriminalitas di Provinsi Jawa Timur tahun 2017,” Indones. J. Stat. Its Appl., vol. 4, no. 1, pp. 156–163, 2020, doi: 10.29244/ijsa.v4i1.557.

N. Lutfiani, S. Sugiman, and S. Mariani, “Pemodelan geographically weighted regression (GWR) dengan fungsi pembobot kernel Gausian dan Bi-Square,” UNNES J. Math., vol. 8, no. 1, pp. 82–91, 2019. doi: 10.15294/ujm.v8i1.17103

K. Amelia, L. O. Asril, and L. Febrianti, “Pemodelan incident rate demam berdarah dengue di Indonesia yang berkaitan dengan faktor lingkungan menggunakan metode geographically weighted regression (GWR),” Ekol. J. Ilm. Ilmu Dasar dan Lingkung. Hidup, vol. 20, no. 2, pp. 64–73, 2020. doi: 10.33751/ekologia.v20i2.2167

M. Y. Darsyah, R. Wasono, and M. F. Agustina, “The model of mixed geographically weighted regression (MGWR) for poverty rate in central java the model of mixed geographically weighted regression,” Int. J. Appl. Math. Stat., vol. 53, no. 6, pp. 114–121, 2015. https://www.researchgate.net/publication/303812347

Refbacks

  • There are currently no refbacks.