Analisis Autoregressive Integrated Moving Average (ARIMA) dengan Intervensi Double Input pada Prediksi Harga Saham

Gita Arinda Maulidya, Neva Satyahadewi, Nur'ainul Miftahul Huda

Abstract

Intervention analysis is the time series analysis used in a time series model that experiences an intervention event. Intervention is an event that can cause time series data to change patterns caused by external or internal factors such as changes in government policy, advertising promotions, environmental regulations, and others. This research uses the ARIMA analysis method of double input step function intervention with daily data on the closing share prices of PT Adaro Energy Indonesia for the period 7 March 2022 to 7 March 2023 because in that period there are two points that are thought to be interventions that have an impact on changes in the ADRO’s share prices over a long period of time. The aim of this research is to analyze the intervention ARIMA model and predict the closing price of PT Adaro Energy Indonesia for the next five-days period. The ARIMA analysis steps are based on the ARIMA model through the process of stationarity data (variance and mean), order identification, parameter estimation, and diagnostic examination. The best ARIMA model used to predict ADRO's closing share price is the ARIMA (2,1,2) model, which is obtained based on the smallest AIC, MAPE, and RMSE values. The prediction results in this research show that the predictions produced for the next five-days period are classified as very good because they have a MAPE value on training data of 1,96% and a MAPE value on testing data of 1,74%.


References

R. Linanda and W. Afriyenis, “Pengaruh struktur modal dan profitabilitas terhadap harga saham,” J. Ekon. Dan Bisnis Islam, vol. 3, no. 1, pp. 135–144, 2018.

N. A. K. Rifai, “Pendekatan regresi nonparametrik dengan fungsi kernel untuk Indeks Harga Saham Gabungan,” Statistika, vol. 19, no. 1, pp. 53–61, 2019.

R. N. Sari, S. Mariani, and P. Hendikawati, “Analisis intervensi fungsi step pada harga saham (Studi Kasus Saham PT Fast Food Indonesia Tbk),” UNNES J. Math., vol. 5, no. 2, pp. 181–189, 2016.

Z. Azzahra, S. Suyono, and R. Arafiyah, “Analisis model intervensi fungsi step terhadap Indeks Harga Konsumen (IHK),” J. Stat. dan Apl., vol. 1, no. 1, pp. 13–22, 2017.

A. Crystine, A. Hoyyi, and D. Safitri, “Analisis intervensi fungsi step (studi kasus pada jumlah pengiriman benda pos ke Semarang pada tahun 2006–2011),” J. Gaussian, vol. 3, no. 3, pp. 293–302, 2014.

A. R. Anandyani, A. Indrasetianingsih, A. Hapsery, and F. Fitriani, “Intervensi multi input untuk memprediksi kurs rupiah terhadap dolar Amerika Serikat sebagai upaya menjaga stabilitas ekonomi pada masa pandemi covid-19,” MUST J. Math. Educ. Sci. Technol., vol. 7, no. 2, pp. 139–151, 2022.

A. P. Tarigan, A. Pambudi, E. Puspitawati, A. R. Pudyantoro, and I. N. Rachmah, “Analisis faktor-faktor yang mempengaruhi daya saing ekspor batu bara Indonesia,” J. Ekon. Lingkungan, Energi, dan Bisnis, vol. 1, no. 1, pp. 35–48, 2023.

S. C. Arini, “Pasar Modal Terguncang, 32 Saham Anjlok hingga ARB, Ada Apa?” [Online]. Available: https://finance.detik.com/bursa-dan-valas/d-6562581/pasar-modal-terguncang-32-saham-anjlok-hingga-arb-ada-apa

B. Moghimi, C. Kamga, A. Safikhani, S. Mudigonda, and P. Vicuna, “Non-stationary time series model for station-based subway ridership during covid-19 pandemic: case study of New York City,” Transp. Res. Rec., vol. 2677, no. 4, pp. 463–477, 2023.

O. Awe, A. Okeyinka, and J. O. Fatokun, “An alternative algorithm for ARIMA model selection,” in 2020 international conference in mathematics, computer engineering and computer science (ICMCECS), IEEE, 2020, pp. 1–4.

P. Widianingsih, G. Darmawan, and N. Sunengsih, “Analisis intervensi dalam model SARIMA untuk memprediksi laju inflasi di Kota Tasikmalaya,” Formosa J. Sci. Technol., vol. 1, no. 4, pp. 293–304, 2022.

A. G. Guimarães and A. R. da Silva, “Impact of regulations to control alcohol consumption by drivers: an assessment of reduction in fatal traffic accident numbers in the Federal District, Brazil,” Accid. Anal. Prev., vol. 127, pp. 110–117, 2019.

W. William and S. Wei, “Time series analysis: univariate and multivariate methods,” USA, Pearson Addison Wesley, Segunda edicion. Cap, vol. 10, pp. 212–235, 2006.

D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to time series analysis and forecasting. John Wiley & Sons, 2015.

N. Imro’ah and H. N. Miftahul, “Analisis kebijakan pemerintah terhadap kasus covid-19 di Bali menggunakan model deret waktu dengan faktor intervensi,” J. Mat. UNAND, vol. 10, no. 3, pp. 369–378, 2021.

J. C. Paul, S. Hoque, and M. M. Rahman, “Selection of best ARIMA model for forecasting average daily share price index of pharmaceutical companies in Bangladesh: A case study on square pharmaceutical ltd,” Glob. J. Manag. Bus. Res. Financ., vol. 13, no. 3, pp. 14–25, 2013.

S. Soltanzadeh, M. M. Vahid, and M. Khedmati, “A Heuristic Algorithm for Determining the Order of ARIMA Models,” in 13th Annual International Conference on Industrial Engineering and Operations Management, pp. 1289–1295, 2023. doi: 10.46254/an13.20230374.

D. I. Purnama and O. P. Hendarsin, “Peramalan jumlah penumpang berangkat melalui transportasi udara di Sulawesi Tengah menggunakan support vector regression (SVR),” Jambura J. Math., vol. 2, no. 2, pp. 49–59, 2020.

N. Salwa, N. Tatsara, R. Amalia, and A. F. Zohra, “Model prediksi liku kalibrasi menggunakan pendekatan jaringan saraf tiruan (JST) (studi kasus: Sub DAS Siak Hulu).” Riau University, 2014.

Yahoo Finance: PT Adaro Energy Indonesia Tbk (ADRO.JK) Stock Historical Prices dan Data: https://finance.yahoo.com/quote/ADRO.JK/history.

Refbacks

  • There are currently no refbacks.