Peramalan Ekspor Migas di Indonesia Menggunakan Pendekatan Seasonal Autoregressive Integrated Moving Average with Exogenous (SARIMAX)
Abstract
Based on Republic of Indonesia Law No. 22 of 2001, oil and natural gas are vital commodities that play an important role in the country's economy. However, the export of Indonesian oil and gas has been fluctuating, making it necessary to have a strategic plan to prevent minimal exports in the future. This planning can be initiated by first gathering the necessary information. The aim of this research is to forecast oil and gas exports in Indonesia using the best possible model. The data used include the value and volume of Indonesian oil and gas exports. The method begins with determining the ARIMA model, followed by incorporating seasonal elements. ARIMA and SARIMA modeling will tentatively include exogenous variables. Subsequently, parameter estimation, significance tests, diagnostic tests, and the determination of the best model are performed. The research findings indicate that the best model is SARIMAX (1,1,0)(0,1,1)12. The forecast results show that the value of Indonesia's oil and gas exports will continue to increase until July 2024, followed by a and slow down after that. It is hoped that the government can prepare sufficient supply for export to prevent a deficit during that period.
References
D. Yunianto, “Analisis pertumbuhan dan kepadatan penduduk terhadap pertumbuhan ekonomi,” FORUM EKONOMI: Jurnal Ekonomi, Manajemen dan Akuntansi, 2021, pp. 688–699.
P. N. Yulisa, M. Al Haris, and P. R. Arum, “Peramalan nilai ekspor migas di Indonesia dengan model long short term memory (LSTM) dan gated recurrent unit (GRU),” J Stat. J. Ilm. Teor. dan Apl. Stat., vol. 16, no. 1, pp. 328–341, 2023.
A. Ansari Saleh, B.-T. Miguel, R. Abdul, and H. Rahmat, “Forecasting the value of oil and gas exports in Indonesia using ARIMA Box-Jenkins,” JINAV J. Inf. Vis., vol. 3, no. 1, pp. 35–42, 2022.
J. D. Cryer and N. Kellet, Time series analysis. Springer, 1991.
R. F. Ariska and A. Ariusni, “Analisis kausalitas ekspor, output manufaktur dan pertumbuhan ekonomi di negara ASEAN,” J. Kaji. Ekon. dan Pembang., vol. 1, no. 2, pp. 645–652, 2019.
R. Handoko, “Model proyeksi ekspor dan impor-volume dan harga,” Kaji. Ekon. dan Keuang., vol. 14, no. 3, pp. 61–81, 2010.
R. Pertiwi, “Pengukuran value at risk (VAR) pada data deret waktu menggunakan metode exponentially weighted moving average (EWMA),” 2018.
W. W. S. Wei, “Time Series Analysis Univariate dan Multivariate Methods,” Canada Addison Wesley Publ. Co., 2006.
A. Tahiyyah, “Analisis jumlah kasus (positif) covid-19 di Kota Pekanbaru dengan metode Box-Jenkins.” Universitas Islam Negeri Sultan Syarif Kasim Riau, 2021.
P. Manigandan et al., “Forecasting natural gas production and consumption in United States-evidence from SARIMA and SARIMAX models,” Energies, vol. 14, no. 19, p. 6021, 2021.
D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to time series analysis and forecasting. John Wiley & Sons, 2015.
BPS, “Analisis Komoditas Ekspor 2013-2020,” Badan Pus. Stat., 2020.
S. P. Ghauri, R. R. Ahmed, D. Streimikiene, and J. Streimikis, “Forecasting exports and imports by using autoregressive (AR) with seasonal dummies and Box-Jenkins approaches: a case of Pakistan,” Inžinerinė Ekon., vol. 31, no. 3, pp. 291–301, 2020.
Refbacks
- There are currently no refbacks.