Comparing Monthly Rainfall Prediction in West Sumatra Using SARIMA, ETS, LSTM, and XGBoosting Methods

Fadhil Muhammad Aslam, Fadhli Aslama Afghani

Abstract

The West Sumatra Province, serving as the trading center on the island of Sumatra, and boasting various attractive tourist destinations, is not immune to incidents of high precipitation leading to hydro-meteorological disasters such as floods and landslides. Therefore, the accurate prediction of monthly rainfall is crucial to minimize the impacts of high precipitation. This research aims to determine the best method for predicting monthly rainfall using data from 1992 to 2022, which can adequately represent its climatological conditions. The results indicate that the Extreme Gradient Boosting method outperforms the Seasonal Autoregressive Integrated Moving Average (SARIMA), Exponential Smoothing (ETS), and Long Short-Term Memory (LSTM) methods in West Sumatra Province, represented by three weather observation points from the BMKG (Climatology Station of West Sumatra, Maritime Meteorology Station of Teluk Bayur, and Minangkabau Meteorology Station). This method exhibits the lowest error values and the strongest correlation between predicted and actual data. This is evident from the Nash-Sutcliffe Efficiency (NSE) values, which are 0.188214535, 0.613823746, and 0.545734162 (unsatisfactory-satisfactory), as well as the obtained correlation values of 0.472103386, 0.795586268, and 0.743002591 (moderate-strong). However, this method is unable to perfectly capture outlier values. These outliers arise as a result of unusual conditions, such as natural disasters or climate changes, and atmospheric phenomena like El Niño-Southern Oscillation (ENSO) and Indian Ocean Dipole (IOD), leading to exceptionally high or low precipitation.

Full Text:

PDF

References

A. N. Persada and F. Yustiana, “Analisis Karakteristik dan Klasifikasi Iklim Menurut Schmidt-Ferguson di Provinsi Sumatera Barat,” in FTSP Series: Seminar Nasionald an Diseminasi Tugas Akhir 2023, FTSP ITENAS, 2023, pp. 909–914.

D. Setiawan, “Analisis Curah Hujan di Indonesia untuk Memetakan Daerah Potensi Banjir dan Tanah Longsor dengan Metode Cluster Fuzzy C-Means dan Singular Value Decompotition (SVD),” J. EMACS, vol. 3, no. 3, pp. 115–120, 2021, doi: https://doi.org/10.21512/emacsjournal.v3i3.7428.

E. Aldrian and R. D. Susanto, “Identification Of Three Dominant Rainfall Regions Within Indonesia And Their Relationship To Sea Surface Temperature,” Int. J. Climatol., vol. 23, no. 12, pp. 1435–1452, 2003, doi: 10.1002/joc.950.

M. I. Gara, L. Dwiridal, and S. Nugroho, “Analisis Karakteristik Periode Ulang Curah Hujan Dengan Metode Iwai Kadoya Untuk Wilayah Sumatera Barat,” Pillar Phys., vol. 12, pp. 47–52, 2019, doi: http://dx.doi.org/10.24036/7515171074.

S. Wahyuni, D. Pujiastuti, L. F. Sani, and A. Rahayu, “Tinjauan Keadaan Meteorologi pada Banjir Bandang Kota Padang Tanggal 24 Juli 2012,” J. Fis. Unand, vol. 4, no. 4, pp. 405–413, 2015, doi: https://doi.org/10.25077/jfu.4.4.%25p.2015.

Badan Nasional Penganggulangan Bencana (BNPB), “GEOPORTAL DATA BENCANA INDONESIA.” Accessed: Nov. 17, 2023. [Online]. Available: https://gis.bnpb.go.id/

M. Geurts, G. E. P. Box, and G. M. Jenkins, “Time Series Analysis: Forecasting and Control,” J. Mark. Res., vol. 14, no. 2, 1977, doi: 10.2307/3150485.

C. C. Holt, “Forecasting Seasonals and Trends by Exponentially Weighted Moving Averages,” Int. J. Forecast., vol. 20, no. 1, pp. 5–10, 2004, doi: https://doi.org/10.1016/j.ijforecast.2003.09.015.

P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving Averages,” Manag. Sci, vol. 6, no. 3, 1960, doi: 10.1287/mnsc.6.3.324.

S. Hochreiter and J. Schmidhuber, “Long Short-term Memory,” Neural Comput., vol. 9, pp. 1735–1780, Dec. 1997, doi: 10.1162/neco.1997.9.8.1735.

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, in KDD ’16. New York, NY, USA: Association for Computing Machinery, 2016, pp. 785–794. doi: 10.1145/2939672.2939785.

F. Aulia, H. Yozza, and D. Devianto, “Peramalan Curah Hujan Bulanan Kabupaten Tanah Datar Dengan Model Seasonal Autoregressive Integrated Moving Average (SARIMA),” J. Mat. UNAND, vol. 8, no. 2, pp. 37–44, 2019, doi: https://doi.org/10.25077/jmu.8.2.37-44.2019.

C. Oktaviani and Afdal, “Prediksi Curah Hujan Bulanan Menggunakan Jaringan Syaraf Tiruan Dengan Beberapa Fungsi Pelatihan Backpropagation (Studi Kasus: Stasiun Meteorologi Tabing Padang, Tahun 2001-2012),” J. Fis. Unand, vol. 2, no. 5, pp. 228–237, 2013, doi: https://doi.org/10.25077/jfu.2.4.%25p.2013.

W. A. L. Sinaga, S. Sumarno, and I. P. Sari, “Penerapan Metode Regresi Linier Berganda Untuk Estimasi Jumlah Penduduk Pada Kecamatan Gunung Malela,” J. Mach. Learn. Artif. Intell., vol. 1, no. 1, pp. 55–64, 2022.

A. Assidiq, P. Hendikawati, and N. Dwidayati, “Perbandingan Metode Weighted Fuzzy Time Series, Seasonal ARIMA, dan Holt-Winter’s Exponential Smoothing untuk Meramalkan Data Musiman,” UNNES J. Math., vol. 6, no. 2, pp. 129–142, 2017, doi: 10.15294/UJM.V6I2.12288.

R. Fahrudin and I. D. Sumitra, “Peramalan Inflasi Menggunakan Metode Sarima dan Single Exponential Smoothing (Studi Kasus: Kota Bandung),” Maj. Ilm. UNIKOM, vol. 17, no. 2, pp. 111–120, 2020, doi: https://doi.org/10.34010/miu.v17i2.3180.

M. Tiyani and A. I. Achmad, “Uji Stasioneritas Dickey Fuller Generalized Least Square pada Data Inflasi Indonesia dari Bulan Januari 2006 Hingga Bulan Mei 2020,” in Prosiding Statistika, SPeSIA, 2020, pp. 27–33. doi: http://dx.doi.org/10.29313/.v6i2.22587.

N. Nirwana, M. Hadijati, and N. Fitriyani, “Estimasi Parameter Model Moving Average Orde 1 Menggunakan Metode Momen dan Maximum Likelihood,” Eig. Math. J., vol. 1, no. 1, p. 17, Jun. 2018, doi: https://doi.org/10.29303/emj.v1i1.8.

M. Jannah and I. N. F. H, “Penaksiran Parameter Model Autoregressive Orde (1) Dengan Menggunakan Metode Likelihood Maksimum,” Math. Appl. J., vol. 1, no. 2, pp. 38–48, 2019, doi: https://doi.org/10.15548/map.v1i2.1180.

H. W. Tresnani, A. Sihabuddin, and K. Mustofa, “Optimasi Parameter Pada Metode Peramalan Grey Holt - Winter Exponential Smoothing Dengan Golden Section,” Berk. MIPA, vol. 25, no. 3, pp. 312–325, 2018.

Nurhamidah, Nusyirwan, and A. Faisol, “Forecasting Seasonal Time Series Data using The Holt-Winters Exponential Smoothing Method of Additive Models,” J. Mat. Integr., vol. 16, no. 2, pp. 151–157, 2020.

L. Wiranda and M. Sadikin, “Penerapan Long Short Term Memory Pada Data Time Series Untuk Memprediksi Penjualan Produk PT. Metiska Farma,” J. Nas. Pendidik. Tek. Inform., vol. 8, no. 3, pp. 184–196, 2019, doi: https://dx.doi.org/10.23887/janapati.v8i3.19139.

O. B. Sezer, M. U. Gudelek, and A. M. Ozbayoglu, “Financial time series forecasting with deep learning : A systematic literature review: 2005–2019,” Appl. Soft Comput., vol. 90, p. 106181, 2020, doi: https://doi.org/10.1016/j.asoc.2020.10618.

D. D. Pramesti, D. C. R. Novitasari, F. Setiawan, and H. Khaulasari, “Long-Short Term Memory (LSTM) For Predicting Velocity And Direction Sea Surface Current on Bali Strait,” J. Ilmu Mat. dan Terap., vol. 16, no. 2, pp. 451–462, 2022, doi: https://doi.org/10.30598/barekengvol16iss2pp451–462.

K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A Search Space Odyssey,” IEEE Trans. Neural Networks Learn. Syst., vol. 28, no. 10, pp. 2222–2232, 2017, doi: 10.1109/TNNLS.2016.2582924.

S. E. H. Yulianti, O. Soesanto, and Y. Sukmawaty, “Penerapan Metode Extreme Gradient Boosting (XGBOOST) pada Klasifikasi Nasabah Kartu Kredit,” J. Math. Theory Appl., vol. 4, no. 1, pp. 21–26, 2022.

P. S. Rizky, R. H. Hirzi, and U. Hidayaturrohman, “Perbandingan Metode LightGBM dan XGBoost dalam Menangani Data dengan Kelas Tidak Seimbang,” J. Ilm. Teor. dan Apl. Stat., vol. 15, no. 2, pp. 228–236, 2022, doi: https://doi.org/10.36456/jstat.vol15.no2.a5548.

E. D. Amelia, S. Wahyuni, and D. Harisuseno, “Evaluasi Kesesuaian Data Satelit sebagai Alternatif Ketersediaan Data Evaporasi di Waduk Wonorejo,” J. Tek. Pengair. J. Water Resour. Eng., vol. 12, no. 2 SE-Articles, pp. 127–138, Dec. 2021, doi: 10.21776/ub.pengairan.2021.012.02.05.

F. Su, Y. Hong, and D. P. Lettenmaier, “Evaluation of TRMM Multisatellite Precipitation Analysis (TMPA) and Its Utility in Hydrologic Prediction in the La Plata Basin,” J. Hydrometeorol., vol. 9, no. 4, pp. 622–640, 2007.

Indarto, Hidrologi Dasar Teori dan Contoh Aplikasi Model Hidrologi. Jakarta: Bumi Aksara, 2010.

D. P. Jarwanti, E. Suhartanto, and J. S. Fidari, “Validasi Data Curah Hujan Satelit TRMM (Tropical Rainfall Measuring Mission) dengan Data Pos Penakar Hujan di DAS Grindulu, Kabupaten Pacitan, Jawa Timur,” J. Teknol. dan Rekayasa Sumber Daya Air, vol. 1, no. 2, pp. 772–785, 2021.

D. N. Moriasi, J. G. Arnold, M. W. Van Liew, R. L. Bingner, R. D. Harmel, and T. L. Veith, “Model Evaluation Guidelines For Systematic Quantification Of Accuracy In Watershed Simulations,” Am. Soc. Agric. Biol. Eng., vol. 50, no. 3, p. 885−900, 2007.

D. N. Moriasi, M. W. Gitau, N. Pai, and P. Daggupati, “Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria,” Am. Soc. Agric. Biol. Eng., vol. 58, no. 6, pp. 1763–1785, 2015, doi: 10.13031/trans.58.10715.

N. Tallamma, N. Ihsan, and A. J. Patandean, “Analisis Pengaruh Madden Julian Oscillation (MJO) Terhadap Curah Hujan Di Kota Makassar,” J. Sains dan Pendidik. Fis., vol. 12, no. 3, pp. 324–329, 2016.

D. A. R. Oktaverina, E. Suhartanto, and S. Wayhuni, “Validasi Data Curah Hujan Satelit TRMM (Tropical Rainfall Measuring Mission) dengan Pos Stasiun Hujan pada Sub DAS Keduang Kabupaten Wonogiri, Provinsi Jawa Tengah,” J. Teknol. dan Rekayasa Sumber Daya Air, vol. 2, no. 1, pp. 265–276, 2022.

D. Chicco, M. J. Warrens, and G. Jurman, “The Coefficient of Cetermination R-squared is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation,” PeerJ. Comput. Sci., vol. 7, p. e623, 2021, doi: 10.7717/peerj-cs.623.

W. Wang and Y. Lu, “Analysis of the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE) in Assessing Rounding Model,” in ICMEMSCE, IOP Conf. Series: Materials Science and Engineering, 2018. doi: 10.1088/1757-899X/324/1/012049.

U. F. Arshinta and D. Ahmad, “Analisis Curah Hujan di Kota Padang dengan Menggunakan Rantai Markov,” UNPjoMath, vol. 2, no. 4, pp. 45–50, 2019, doi: http://dx.doi.org/10.24036/unpjomath.v4i4.7928.

Centers for Disease Control and Prevention, “Precipitation Extremes: Heavy Rainfall, Flooding, and Droughts.” Accessed: Jan. 05, 2024. [Online]. Available: https://www.cdc.gov/climateandhealth/effects/precipitation_extremes.htm

Sitompul, Zulfahmi, and E. Nurjani, “Pengaruh El Nino Southern Oscillation (ENSO) Terhadap Curah Hujan Musiman Dan Tahunan Di Indonesia,” J. Bumi Indones., vol. 2, no. 1, 2013.

A. Kurniadi, E. Weller, S.-K. Min, and M.-G. Seong, “Independent ENSO and IOD Impacts on Rainfall Extremes Over Indonesia,” Int. J. Climatol., vol. 41, pp. 1–17, Feb. 2021, doi: 10.1002/joc.7040.

Refbacks

  • There are currently no refbacks.