Perbandingan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA) dan Extreme Learning Machine (ELM) pada Peramalan Peredaran Uang Kartal di Indonesia
Abstract
Money is generally accepted as legal tender in fulfilling an obligation. Money circulation is very important to be considered and controlled, to have a positive impact on the economy. Control of money circulation is usually emphasized on the type of cash, which is in the form of paper and metals. One of the ways that can help in controlling cash is by forecasting. This study aims to compare the accuracy of forecasting results on cash circulation data using the SARIMA and ELM methods. The data used is the circulation cash from January 2011 to April 2022. The SARIMA method is a method for forecasting time series data containing seasonality, while the ELM method is a method on artificial neural networks that can do forecasting. The best SARIMA model obtained is SARIMA (1,1,0)(0,1,0)12. The best ELM architecture obtains 12 input layer neurons, 45 hidden layer neurons, and 1 output layer. The measure of forecasting error to determine the best model is using MAPE. The results show that the SARIMA method has a training data MAPE of 2,3270% and testing data of 2,2772%, while the ELM method has a training data MAPE of 4,2548% and testing data of 3,8615%. Therefore, the SARIMA method is better than the ELM method at forecasting the circulation of cash in Indonesia.
Keywords: cash; extreme learning machine; seasonal autoregressive integrated moving average.
Full Text:
PDFReferences
[Bank Indonesia, Daftar Istilah Sistem Pembayaran Indonesia. Jakarta : Bank Indonesia, 2014, https://www.bi.go.id/id/fungsi-utama/sistem-pembayaran/default.aspx.
S.V. Ranita, “Analisis volatilitas jumlah uang beredar di Indonesia,” Medan: Program Studi Ilmu Ekonomi, Universitas Negeri Medan, 2010.
S. I. Y. Ardian, T. Rismawan, dan D. M. Midyanti, “Penerapan metode extreme learning machine untuk peramalan jumlah kepadatan penduduk di Kalimantan Barat,” Coding: Jurnal Komputer dan Aplikasi, vol. 7, no. 3, pp. 34-43, 2019, doi: http://dx.doi.org/10.26418/coding.v7i03.37147.
B. G. Prianda dan E. Widodo, “Perbandingan metode seasonal ARIMA dan extreme learning machine pada peramalan jumlah wisatawan mancanegara ke Bali,” Barekeng : Jurnal Ilmu Matematika dan Terapan, vol. 15, no. 4, pp. 639-650, 2021, doi: https://doi.org/10.30598/barekengvol15iss4pp639-650.
M. I. Rizki dan T. A. Taqiyyuddin, “Penerapan model SARIMA untuk memprediksi tingkat inflasi di Indonesia,” Jurnal Sains Matematika dan Statistika, vol. 7, no. 2, pp. 62-72, 2021, doi: https://dx.doi.org/10.24014/jsms.v7i2.13168.
P. Utomo dan A. Fanani, “Peramalan jumlah penumpang kereta api di indonesia menggunakan metode seasonal autoregressive integrated moving average (SARIMA),” Jurnal Mahasiswa Matematika ALGEBRA, vol. 1, no. 1, pp. 169-178, 2020, https://api.core.ac.uk/oai/oai:oai.jurnalsaintek.uinsby.ac.id:article/1030.
A. Yahya, “Peramalan indeks harga konsumen indonesia menggunakan metode seasonal-arima (SARIMA),” Jurnal Gaussian, vol. 11, no. 2, pp. 313-322, 2022, doi: https://doi.org/10.14710/j.gauss.v11i2.35528.
N. P. Hendayanti dan M. Nurhidayati, “Perbandingan metode seasonal autoregressive integrated moving average (SARIMA) dengan support vector regression (SVR) dalam memprediksi jumlah kunjungan wisatawan mancanegara ke Bali,” Jurnal Varian, vol 3, no. 2, pp. 149-162, 2020, doi: https://doi.org/10.30812/varian.v3i2.668.
D. A. Lubis, M. B. Johra, dan G. Darmawan, “Peramalan indeks harga konsumen dengan metode singular spectral analysis (SSA) dan seasonal autoregressive integrated moving average (SARIMA),” Jurnal Matematika (MANTIK), vol. 3, no. 2, pp. 74-82, 2017, doi: https://doi.org/10.15642/mantik.2017.3.2.74-82.
N. A. Izati, B. Warsito, dan T. Widiharih, “Prediksi harga emas menggunakan feed forward neural network dengan metode extreme learning machine,” Jurnal Gaussian, vol. 8, no. 2, pp. 171-183, 2019, doi: https://doi.org/10.14710/j.gauss.8.2.171-183.
M. Karmila dan I. Nirmala, “Prediksi jumlah produksi kebutuhan air pada perumda air minum tirta khatulistiwa Pontianak menggunakan metode extreme learning machine (ELM),” Coding: Jurnal Komputer dan Aplikasi, vol. 11, no. 1, pp. 137-146, 2023, doi: http://dx.doi.org/10.26418/coding.v11i1.58052.
M. S. Libianto, Tibyani, dan Y. A. Sari, “Prediksi jumlah kunjungan wisatawan mancanegara pada negara Singapura menggunakan algoritme extreme learning machine,” Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 10, pp. 10324-10330, 2019, https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6667.
A. N. Alfiyatin, W. F. Mahmudy, C. F. Ananda, dan Y. P. Anggodo, “Penerapan extreme learning machine (ELM) untuk peramalan laju inflasi di Indonesia,” Jurnal Teknologi Informasi dan Ilmu Komputer (JTIIK), vol. 6, no. 2, pp. 179-186, 2019, doi: http://dx.doi.org/10.25126/jtiik.201962900.
A. R. Dimashanti dan Sugiman, “Peramalan indeks harga konsumen kota semarang menggunakan SARIMA berbantuan Software Minitab,” Prosiding Seminar Nasional Matematika (PRISMA), vol. 4, pp. 565-576, 2021, https://journal.unnes.ac.id/sju/prisma/article/view/45030.
W. W. S. Wei, Time Series Analysis Univariate and Multivariate Methode. Canada : Pearson Eddison Wesley, 2006.
G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine theory and applications,” Neurocomputing, vol. 70, pp. 489-501, 2006, doi: http://dx.doi.org/10.1016/j.neucom.2005.12.126.
B. K. Khotimah, E. M. Sari, dan H. Yulianarta, “Kinerja metode extreme learning machine pada sistem peramalan,” Jurnal SimanteC, vol. 1, no. 3, pp. 186-191, 2010, doi: https://doi.org/10.21107/simantec.v1i3.13387.
S. Makridakis, S.C. Wheelwright, and V.E. McGee, Forecating: Methods and Applications. New York : John Wiley & Sons, 1983. Terjemahan U.S. Andriyanto dan A. Basith, Metode dan Aplikasi Peramalan. Jakarta : Erlangga, 1999.
Refbacks
- There are currently no refbacks.