Comparative Analysis of Fuzzy Mamdani Method and Fuzzy Sugeno Method in Predicting Household Electricity Consumption Costs

Luthfia Zahra, Mashuri Mashuri

Abstract

Electricity has become an essential part of our daily lives. As technology has rapidly developed, many modern activities and devices have become highly dependent on electricity. The more electricity that is used, the higher the monthly cost. This cost is influenced by usage patterns and various uncertain factors. Fuzzy logic is one approach that can be used in decision support systems in the face of uncertainty like this. This study aims to apply the Mamdani and Sugeno fuzzy methods based on house building area, number of electronic devices, number of family members, and income to determine which method more accurately predicts household electricity consumption costs based on the mean absolute percentage error (MAPE) value. Data for this study were obtained through questionnaires and interviews with residents of Margorejo Village. Data processing yielded a MAPE value of 12.3% for the Mamdani method and a MAPE value of 9.9% for the Sugeno method. Based on these results, the MAPE value for the Sugeno method is smaller than that for the Mamdani method. Therefore, it can be concluded that the Sugeno method is more accurate for predicting household electricity consumption costs in Margorejo Village.


Keywords: Mamdani Method, Sugeno Method, MAPE.

References

I. B. F. Citarsa, I. N. W. Satiawan, Supriono, I. K. Wiryajati, and N. M. Seniari, “Penyuluhan pemakaian peralatan listrik di perumahan kodya asri Mataram”, JAI, vol. 7, no. 2, pp. 139–144, 2020, https://doi.org/10.29303/abdiinsani.v7i2.323.

E. J. Aenun and M. Mashuri, “Implementasi logika fuzzy metode Mamdani pada prediksi biaya pemakaian listrik (studi kasus: Kelurahan Gandasari, Kota Tangerang),” UNNES Journal of Mathematics, vol. 11, no. 2, pp. 179–188, 2022. [Online]. Available: https://journal.unnes.ac.id/sju/ujm/article/view/50061.

U. H. Andini, M. S. Soeaidy, and A. Hayat, “Pemberdayaan ekonomi masyarakat dari desa tertinggal menuju desa tidak tertinggal (studi di Desa Muktiharjo Kecamatan Margorejo Kabupaten Pati),” Adm. Publik, vol. 2, no. 12, pp. 7–11, 2015. [Online]. Available: https://administrasipublik.studentjournal.ub.ac.id/index.php/jap/article/view/737.

B. P. Asmorojati, N. A. Oesman, R. A. R. Hayah, N. Salsabilla, M. M. Alfarisi, and N. Nurjanah, “Penerapan nilai-nilai penalaran silogisme dalam case fuzzy logics,” Jurnal Cakrawala Ilmiah, vol. 3, no. 11, pp. 3147–3152, 2024. [Online]. Available: https://mail.bajangjournal.com/index.php/JCI/article/view/8159.

S. Ayasyifa and J. Aminata, “Analisis faktor-faktor yang mempengaruhi konsumsi listrik di Indonesia tahun 2015–2019,” Thesis (Undergraduate), Fakultas Ekonomika dan Bisnis, Universitas Diponegoro, 2021. [Online]. Available: https://repofeb.undip.ac.id/9476/.

C. P. P. Maibang and A. M. Husein, “Prediksi jumlah produksi palm oil menggunakan fuzzy inference system mamdani”, Jurnal Teknologi dan Ilmu Komputer Prima (JUTIKOMP), vol. 2, no. 2, pp. 400–407, 2019. https://doi.org/10.34012/jutikomp.v2i2.528.

H. Santosa, “Aplikasi penentuan tarif listrik menggunakan metode Fuzzy Sugeno,” J. Sist. Inf. Bisnis, vol. 4, no. 1, pp. 28–39, 2014, https://doi.org/10.21456/vol4iss1pp28-39.

E. V. Haryanto and F. Nasari, “Perbandingan penerapan metode Fuzzy Mamdani dan Sugeno dalam memprediksi tingginya pemakaian listrik (studi kasus kelurahan XYZ),” Jurnal Teknik Informatika, vol. 5, no. 34, pp. 534–539, 2017. [Online]. Available: http://repository.potensi-utama.ac.id/jspui/handle/123456789/3355.

G. Yudhistira, P. A. Widiastuti, Rahyuni, and T. Hastono, “Menerapkan konsep logika fuzzy dalam meningkatkan efisiensi persediaan barang dengan menggunakan Metode Mamdani,” Jurnal Publikasi Ilmu Komputer dan Multimedia, vol. 3, no. 1, pp. 105–115, 2024, https://doi.org/10.55606/jupikom.v3i1.2557.

Tundo and H. Mahyuzar, “Prediksi jumlah produksi genteng di Kebumen berdasarkan fuzzy inference system Mamdani,” Technol. Informatics Insight J., vol. 1, no. 2, pp. 104–116, 2022, https://doi.org/10.32639/tiij.v1i2.223.

S. Nurhayati, D. Supriadi, and T. H. Mardzuki, “Sistem prediksi kebutuhan vitamin a menggunakan metode Fuzzy Mamdani,” J. Manaj. Inform., vol. 13, no. 1, pp. 1–10, 2022, https://doi.org/10.34010/jamika.v13i1.8147.

S. A. Pasaribu and A. Rozy, “Penerapan metode sugeno dalam memprediksikan turun naiknya harga jual pada PT.Yuki Abadi,” J. Minfo Polgan, vol. 12, no. 2, pp. 2127–2134, 2023, https://doi.org/10.33395/jmp.v12i2.13171.

M. Simanjuntak, “Penilaian kinerja dosen dengan menggunakan metode Sugeno,” Journal Information System Development (ISD), vol. 2, no. 1, pp. 1–5, 2017. [Online]. Available: https://ejournal-medan.uph.edu/isd/article/view/83.

M. A. Hafiz and Sriani, “Penerapan logika Fuzzy Sugeno untuk optimasi stok biji kopi pada Kafe Rooster,” J. Fasilkom, vol. 13, no. 02, pp. 165–172, 2023, https://doi.org/10.37859/jf.v13i02.5460.

N. Febriany, F. Agustina, and R. Marwati, “Aplikasi metode Fuzzy Mamdani dalam penentuan status gizi dan menggunakan software Matlab,” J. EurekaMatika, vol. 5, no. 1, pp. 84–96, 2017, https://doi.org/10.17509/jem.v5i1.10300.

I. Nabillah and I. Ranggadara, “Mean absolute percentage error untuk evaluasi hasil prediksi komoditas laut,” JOINS (Journal Inf. Syst., vol. 5, no. 2, pp. 250–255, 2020. [Online]. Available: https://ejournal.upi.edu/index.php/JEM/article/view/10300.

E. R. Y. Sahulata, H. J. Wattimena, and M. S. Noya Van Delsen, “Penerapan fuzzy inference system tipe mamdani untuk menentukan jumlah produksi roti berdasarkan data jumlah permintaan dan persediaan (studi kasus Pabrik Cinderella Bread House di Kota Ambon),” BAREKENG: Jurnal Ilmu Matematika dan Terapan, vol. 14, no. 1, pp. 079–090, 2020, https://doi.org/10.30598/barekengvol14iss1pp079-090.

Refbacks

  • There are currently no refbacks.