Biochar Quality During Slow Pyrolysis from Oil Palm Empty Fruit Bunches and Its Application as Soil Ameliorant

Amsar Maulana, Mimien Harianti, Salma Athiyya, Teguh Budi Prasetyo, Moli Monikasari, Irwan Darfis, Dewi Rezki, Herviyanti Herviyanti

Abstract

The optimal utilization of oil palm empty fruit bunch (OPEFB) waste holds significant potential for biomass bioconversion via slow pyrolysis, presenting a promising alternative for producing high-quality biochar as a soil ameliorant. This study investigates the effects of slow pyrolysis temperatures (≤ 300 °C) on the physicochemical properties of biochar derived from OPEFB and evaluates its efficacy as a soil ameliorant. This study utilized a completely randomized design (CRD) with three replications across two experiments. The first experiment assessed the effect of slow pyrolysis temperature on the quality of biochar derived from OPEFB, with treatments set at four temperatures (150, 200, 250, and 300 °C) levels. The second experiment evaluated the impact of the selected biochar on the surface charge of oil palm plantation soil, applying biochar at five different doses (0, 20, 40, 60, and 80 tons ha-¹). The potential temperature of 200 °C in slow pyrolysis had a significant effect on the quality of biochar from OPEFB with a yield ratio of 27.84% char; proximate (91.95% volatile matter and 0.81% fixed carbon), cation exchange capacity (CEC) [167.73 cmol(+) kg-1], and macro and micronutrients (e.g., C, N, P, K, Ca, Si, Fe, Cu, Zn, and Mn). The potential of O-H, N-H, C-H, and C=O functional groups of biochar from OPEFB for nutrient availability and absorption efficiency proven by the effect of 40 tons ha-1 biochar from OPEFB which significantly increased 80% of soil surface charge [pH by 0.80; organic matter (OM) composition by 19.8%, CEC by 11 cmol(+) kg-1] and nutrients [0.93% C; 0.04% N; 17.57 ppm P2O5; 0.65 cmol(+) kg-1 K] on Inceptisols.

Keywords

biochar; chemical properties; Inceptisols; nutrients; surface charge

Full Text:

PDF

References

Al-Rumaihi, A., Shahbaz, M., Mckay, G., Mackey, H., & Al-Ansari, T. (2022). A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renewable and Sustainable Energy Reviews, 167, 112715. https://doi.org/10.1016/j.rser.2022.112715

Altıkat, A., Alma, M. H., Altıkat, A., Bilgili, M. E., & Altıkat, S. (2024). A comprehensive study of biochar yield and quality concerning pyrolysis conditions: A multifaceted approach. Sustainability (Switzerland), 16(2), 937. https://doi.org/10.3390/su16020937

Amalina, F., Razak, A. S. A., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances, 7, 100134. https://doi.org/10.1016/j.hazadv.2022.100134

Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability (Switzerland), 13(3), 1330. https://doi.org/10.3390/su13031330

Azzi, E. S., Li, H., Cederlund, H., Karltun, E., & Sundberg, C. (2024). Modeling biochar long-term carbon storage in soil with harmonized analysis of decomposition data. Geoderma, 441, 116761. https://doi.org/10.1016/j.geoderma.2023.116761

Bagheri Novair, S., Cheraghi, M., Faramarzi, F., Asgari Lajayer, B., Senapathi, V., Astatkie, T., & Price, G. W. (2023). Reviewing the role of biochar in paddy soils: An agricultural and environmental perspective. Ecotoxicology and Environmental Safety, 263, 115228. https://doi.org/10.1016/j.ecoenv.2023.115228

Bo, X., Zhang, Z., Wang, J., Guo, S., Li, Z., Lin, H., … & Zou, J. (2023). Benefits and limitations of biochar for climate-smart agriculture: A review and case study from China. Biochar, 5(1), 77. https://doi.org/10.1007/s42773-023-00279-x

Chávez-García, E., Aguillón-Martínez, J., Sánchez-González, A., & Siebe, C. (2020). Characterization of untreated and composted biochar derived from orange and pineapple peels. Revista Internacional de Contaminacion Ambiental, 36(2), 413–427. https://doi.org/10.20937/RICA.53591

Chen, W. H., Lin, B. J., Lin, Y. Y., Chu, Y. S., Ubando, A. T., Show, P. L., …, & Pétrissans, M. (2021). Progress in biomass torrefaction: Principles, applications, and challenges. Progress in Energy and Combustion Science, 82, 100887. https://doi.org/10.1016/j.pecs.2020.100887

Chi, W., Nan, Q., Liu, Y., Dong, D., Qin, Y., Li, S., & Wu, W. (2024). Stress resistance enhancing with biochar application and promotion on crop growth. Biochar, 6, 43. https://doi.org/10.1007/s42773-024-00336-z

Darfis, I., Maulana, A., Fathi, A. N. M., Rezki, D., Junaidi, J., & Herviyanti, H. (2023a). The effect of pyrolysis methods and particle size on biochar characteristics of Surian (Toona ciliata) as ameliorant. AIP Conference Proceedings, 2730(1), 120002. https://doi.org/10.1063/5.0127751

Darfis, I., Maulana, A., Prasetyo, T. B., Lita, A. L., & Herviyanti. (2023b). Surface charge characteristics of Inceptisols ameliorated with biochar from young coconut waste. IOP Conference Series: Earth and Environmental Science, 1182, 9. https://doi.org/10.1088/1755-1315/1182/1/012034

Du, W., Liu, X., Tian, R., Li, R., Ding, W., & Li, H. (2020). Specific ion effects of incomplete ion-exchange by electric field-induced ion polarization. RSC Advances, 10(26), 15190–15198. https://doi.org/10.1039/d0ra01266a

Elkhlifi, Z., Iftikhar, J., Sarraf, M., Ali, B., Saleem, M. H., Ibranshahib, I., … & Chen, Z. (2023). Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability (Switzerland), 15(3), 2527. https://doi.org/10.3390/su15032527

Eviati, Sulaeman, Herawaty, L., Anggria, L., Usman, Tantika, H. E., Prihatini, R., & Wuningrum, P. (2023). Petunjuk teknis edisi 3 analisis kimia tanah, tanaman, air, dan pupuk. Jakarta: Soil and Fertilizer Instrument Standard Testing Center, Ministry of Agriculture. Retrieved from https://tanahpupuk.bsip.pertanian.go.id/publikasi/pedum-juknis#open-book

Geng, N., Kang, X., Yan, X., Yin, N., Wang, H., Pan, H., Yang, Q., Lou, Y., & Zhuge, Y. (2022). Biochar mitigation of soil acidification and carbon sequestration is influenced by materials and temperature. Ecotoxicology and Environmental Safety, 232(113241), 11. https://doi.org/10.1016/j.ecoenv.2022.113241

Hailegnaw, N. S., Mercl, F., Pračke, K., Száková, J., & Tlustoš, P. (2019). Mutual relationships of biochar and soil pH, CEC, and exchangeable base cations in a model laboratory experiment. Journal of Soils and Sediments, 19(5), 2405–2416. https://doi.org/10.1007/s11368-019-02264-z

Herviyanti, H., Maulana, A., Harianti, M., Lita, A. L., Prasetyo, T. B., Juwita, P., Kurnianto, R. T., & Yasin, S. (2024). Effect of glyphosate contamination on surface charge change and nutrients of degraded Inceptisols ameliorated with sub-bituminous coal. Journal of Degraded and Mining Lands Management, 11(2), 5135–5145. https://doi.org/10.15243/jdmlm.2024.112.5135

He, D., Luo, Y., & Zhu, B. (2024). Feedstock and pyrolysis temperature influence biochar properties and its interactions with soil substances: Insights from a DFT calculation. Science of the Total Environment, 922(171259), 13. https://doi.org/10.1016/j.scitotenv.2024.171259

Herviyanti, Maulana, A., Lita, A. L., Prasetyo, T. B., & Ryswaldi, R. (2022). Characteristics of biochar methods from bamboo as ameliorant. IOP Conference Series: Earth and Environmental Science, 959(1), 012036. https://doi.org/10.1088/1755-1315/959/1/012036

Karimah, R., Purwanto, B. H., Hanudin, E., Utami, S. N. H., & Maimunah, M. A. (2024). Effect of different types of biochar applications and phosphate fertilizer on the quality and yield of edamame soybeans on andisols. Caraka Tani: Journal of Sustainable Agriculture, 39(1), 117–139. https://doi.org/10.20961/carakatani.v39i1.80217

Kavan Kumar, V., & Panwar, N. L. (2024). Pyrolysis technologies for biochar production in waste management: A review. Clean Energy, 8(4), 61–78. https://doi.org/10.1093/ce/zkae036

Khan, S., Irshad, S., Mehmood, K., Hasnain, Z., Nawaz, M., Rais, A., … & Ibrar, D. (2023). Biochar production and characteristics, its impacts on soil health, crop production, and yield enhancement: A review. Plants, 13(2), 166. https://doi.org/10.3390/plants13020166

Kumari, V. V., Banerjee, P., Verma, V. C., Sukumaran, S., Chandran, M. A. S., Gopinath, K. A., … & Awasthi, N. K. (2022). Plant nutrition: An effective way to alleviate abiotic stress in agricultural crops. International Journal of Molecular Sciences, 23(15), 8519. https://doi.org/10.3390/ijms23158519

Lago, B. C., Silva, C. A., Melo, L. C. A., & Morais, E. G. de. (2021). Predicting biochar cation exchange capacity using fourier transform infrared spectroscopy combined with partial least square regression. Science of the Total Environment, 794, 148762 https://doi.org/10.1016/j.scitotenv.2021.148762

Li, S., & Tasnady, D. (2023). Biochar for soil carbon sequestration: Current knowledge, mechanisms, and future perspectives. C-Journal of Carbon Research, 9(3), 67. https://doi.org/10.3390/c9030067

Matin, N. H., & Aydin, E. (2022). Reviewing the effect of pyrolysis temperature on the fourier-transform infrared spectra of biochars. Acta Horticulturae et Regiotecturae, 25(2), 160–173. https://doi.org/10.2478/ahr-2022-0020

Maulana, A., Herviyanti, Prasetyo, T. B., Harianti, M., & Lita, A. L. (2022). Effect of pyrolysis methods on characteristics of biochar from young coconut waste as ameliorant. IOP Conference Series: Earth and Environmental Science, 959(1), 012035. https://doi.org/10.1088/1755-1315/959/1/012035

Nabila, R., Hidayat, W., Haryanto, A., Hasanudin, U., Iryani, D. A., Lee, S., …, & Yoo, J. (2023). Oil palm biomass in Indonesia: Thermochemical upgrading and its utilization. Renewable and Sustainable Energy Reviews, 176(113193), 23. https://doi.org/10.1016/j.rser.2023.113193

Nair, R. R., Kißling, P. A., Marchanka, A., Lecinski, J., Turcios, A. E., Shamsuyeva, M., … & Weichgrebe, D. (2023). Biochar synthesis from mineral and ash-rich waste biomass, part 2: Characterization of biochar and co-pyrolysis mechanism for carbon sequestration. Sustainable Environment Research, 33(1), 14. https://doi.org/10.1186/s42834-023-00176-9

Nicholas, H. L., Mabbett, I., Apsey, H., & Robertson, I. (2022). Physico-chemical properties of waste-derived biochar from community-scale faecal sludge treatment plants. Gates Open Research, 6, 96. https://doi.org/10.12688/gatesopenres.13727.1

Owsianiak, M., Lindhjem, H., Cornelissen, G., Hale, S. E., Sørmo, E., & Sparrevik, M. (2021). Environmental and economic impacts of biochar production and agricultural use in six developing and middle-income countries. Science of the Total Environment, 755(142455), 10. https://doi.org/10.1016/j.scitotenv.2020.142455

Pahnila, M., Koskela, A., Sulasalmi, P., & Fabritius, T. (2023). A review of pyrolysis technologies and the effect of process parameters on biocarbon properties. Energies, 16(19), 6936. https://doi.org/10.3390/en16196936

Pandian, K., Vijayakumar, S., Mustaffa, M. R. A. F., Subramanian, P., & Chitraputhirapillai, S. (2024). Biochar – A sustainable soil conditioner for improving soil health, crop production, and environment under changing climate: A review. Frontiers in Soil Science, 4, 1376159. https://doi.org/10.3389/fsoil.2024.1376159

Prasetyo, T. B., Maulana, A., Harianti, M., Lita, A. L., & Herviyanti, H. (2023). Study of surface charge and chemical properties of ex-gold mining soil ameliorated with Indonesian sub-bituminous coal. IOP Conference Series: Earth and Environmental Science, 1160(1), 012032. https://doi.org/10.1088/1755-1315/1160/1/012032

Ravindiran, G., Rajamanickam, S., Janardhan, G., Hayder, G., Alagumalai, A., Mahian, O., Lam, S. S., & Sonne, C. (2024). Production and modifications of biochar to engineered materials and its application for environmental sustainability: A review. Biochar, 6(1), 62. https://doi.org/10.1007/s42773-024-00350-1

Samiran, N. A., Jaafar, M. N. M., Ng, J. H., Lam, S. S., & Chong, C. T. (2016). Progress in biomass gasification technique - With focus on Malaysian palm biomass for syngas production. Renewable and Sustainable Energy Reviews, 62, 1047–1062. https://doi.org/10.1016/j.rser.2016.04.049

Selvarajoo, A., & Oochit, D. (2020). Effect of pyrolysis temperature on product yields of palm fiber and its biochar characteristics. Materials Science for Energy Technologies, 3, 575–583. https://doi.org/10.1016/j.mset.2020.06.003

Singh, B., Camps-Arbestain, M., & Lehmann, J. (2017). Biochar : A guide to analytical methods. CSIRO Publishing. Retrieved from https://www.publish.csiro.au/book/7478/

Singh Yadav, S. P., Bhandari, S., Bhatta, D., Poudel, A., Bhattarai, S., Yadav, P., …, & Oli, B. (2023). Biochar application: A sustainable approach to improve soil health. Journal of Agriculture and Food Research, 11, 100498. https://doi.org/10.1016/j.jafr.2023.100498

Suresh Babu, K. K. B., Nataraj, M., Tayappa, M., Vyas, Y., Mishra, R. K., & Acharya, B. (2024). Production of biochar from waste biomass using slow pyrolysis: Studies of the effect of pyrolysis temperature and holding time on biochar yield and properties. Materials Science for Energy Technologies, 7, 318–334. https://doi.org/10.1016/j.mset.2024.05.002

Tomczyk, A., Sokołowska, Z., & Boguta, P. (2020). Biochar physicochemical properties: Pyrolysis temperature and feedstock kind effects. Reviews in Environmental Science and Biotechnology, 19(1), 191–215. https://doi.org/10.1007/s11157-020-09523-3

Tsolis, V., & Barouchas, P. (2023). Biochar as soil amendment: The effect of biochar on soil properties using VIS-NIR diffuse reflectance spectroscopy, biochar aging and soil microbiology—a review. Land, 12(8), 1580. https://doi.org/10.3390/land12081580

Tusar, H. M., Uddin, M. K., Mia, S., Suhi, A. A., Wahid, S. B. A., Kasim, S., Sairi, N. A., Alam, Z., & Anwar, F. (2023). Biochar-acid soil interactions—a review. Sustainability (Switzerland), 15(18), 13366. https://doi.org/10.3390/su151813366

Vassilev, S. V., Vassileva, C. G., Song, Y. C., Li, W. Y., & Feng, J. (2017). Ash contents and ash-forming elements of biomass and their significance for solid biofuel combustion. Fuel, 208, 377–409. https://doi.org/10.1016/j.fuel.2017.07.036

Visser, E. D., Seroka, N. S., & Khotseng, L. (2024). Recent advances in biochar: Synthesis techniques, properties, applications, and hydrogen production. Processes, 12(6), 1111. https://doi.org/10.3390/pr12061111

Wang, A., Li, D., Huang, B., & Lu, Y. (2019). A brief study on using pHH2O to predict pHKCl for acid soils. Agricultural Sciences, 10(02), 142–149. https://doi.org/10.4236/as.2019.102012

Wang, L., Ok, Y. S., Tsang, D. C. W., Alessi, D. S., Rinklebe, J., Wang, H., …, & Hou, D. (2020). New trends in biochar pyrolysis and modification strategies: Feedstock, pyrolysis conditions, sustainability concerns and implications for soil amendment. Soil Use and Management, 36(3), 358–386. https://doi.org/10.1111/sum.12592

Wang, M., Zhou, C., Li, C., Zhu, W., Shi, J., & Liu, G. (2024a). Investigation on the thermochemical characteristics, kinetics, and evolved gases for typical kitchen waste pyrolysis. Waste Management Bulletin, 2(2), 232–243. https://doi.org/10.1016/j.wmb.2024.05.002

Wang, T., Camps-Arbestain, M., Hedley, M., Singh, B. P., Calvelo-Pereira, R., & Wang, C. (2014). Determination of carbonate-C in biochars. Soil Research, 52(5), 495–504. https://doi.org/10.1071/SR13177

Wang, X., Ding, J., Han, L., Tan, J., Ge, X., & Nan, Q. (2024b). Biochar addition reduces salinity in salt-affected soils with no impact on soil pH: A meta-analysis. Geoderma, 443(116845), 10. https://doi.org/10.1016/j.geoderma.2024.116845

Wen, X., Wang, Y., Cheng, P., Liu, D., Ma, S., Zhang, C., Liu, T., & Tao, L. (2020). Surface charge properties of variable charge soils influenced by environmental factors. Applied Clay Science, 189, 105522. https://doi.org/10.1016/j.clay.2020.105522

Yaashikaa, P. R., Kumar, P. S., Varjani, S., & Saravanan, A. (2020). A critical review on the biochar production techniques, characterization, stability, and applications for circular bioeconomy. Biotechnology Reports, 28, e00570. https://doi.org/10.1016/j.btre.2020.e00570

Yan, R., Yang, H., Chin, T., Liang, D. T., Chen, H., & Zheng, C. (2005). Influence of temperature on the distribution of gaseous products from pyrolyzing palm oil wastes. Combustion and Flame, 142(1–2), 24–32. https://doi.org/10.1016/j.combustflame.2005.02.005

Zhang, M., Xi, Z., Gong, Z., & Dong, Y. (2023). Reaction mechanism of nitrogen-containing heterocyclic compounds affecting coal spontaneous combustion. ACS Omega, 8(38), 35295–35306. https://doi.org/10.1021/acsomega.3c05088

Zhang, X., Zhao, B., Liu, H., Zhao, Y., & Li, L. (2022). Effects of pyrolysis temperature on biochar’s characteristics and speciation and environmental risks of heavy metals in sewage sludge biochars. Environmental Technology and Innovation, 26, 102288. https://doi.org/10.1016/j.eti.2022.102288

Zhou, X., Liu, X., Sun, L., Jia, X., Tian, F., Liu, Y., & Wu, Z. (2024). Prediction of biochar yield and specific surface area based on integrated learning algorithm. C-Journal of Carbon Research, 10(1), 10. https://doi.org/10.3390/c10010010

Refbacks

  • There are currently no refbacks.