The Potential of Rhizophagus intraradices, Bacillus thuringiensis Bt BMKP and Silica for Anthracnose Disease Control in Shallot

Rizky Amallia, Suryanti Suryanti, Tri Joko


Anthracnose caused by Colletotrichum gloeosporioides is a prevalent disease that poses a significant threat to shallot production in Indonesia. To mitigate this issue, the use of biological agents presents an alternative for disease control, reducing the inherent risks associated with the use of chemical pesticides. Therefore, this study aimed to determine the potentiality and mechanism of the biological agents (Rhizophagus intraradices and Bacillus thuringiensis) combined with silica. These agents were evaluated both individually and in combination to suppress the development of anthracnose in Tajuk variety shallot. The study was conducted in the laboratory and greenhouse, arranged in a completely randomized design with six treatments and three replications. The ability to suppress pathogenic fungi was determined based on in vitro antagonism tests of B. thuringiensis, disease severity, area under disease progress curve (AUDPC), plant height, number of leaves, number of tillers and the percentage of mycorrhizal fungal infections. Furthermore, the mycorrhizal infection on plant roots was observed using staining methods. The results showed that the Bt BMKP isolate was included in the B. thuringiensis strain RC9 group with the capacity to inhibit C. gloeosporioides in vitro by 18.88%. The combination treatment of R. intraradices, B. thuringiensis and silica reduced infection from anthracnose by 15.52% compared with control. These three treatments also significantly increased the agronomic performance of shallot up to six weeks after planting compared to control and other treatments.


Allium cepa; biocontrol; Colletotrichum gloeosporioides; mycorrhiza; PGPB

Full Text:



Artanti, H., Joko, T., Somowiyarjo, S., & Suryanti. (2022). The potential of Rhizophagus intraradices and Trichoderma asperellum to induce shallot resistance against twisted disease. Jurnal Perlindungan Tanaman Indonesia, 26(1), 57–66.

Azizoglu, U. (2019). Bacillus thuringiensis as a biofertilizer and biostimulator: A mini-review of the little-known plant growth-promoting properties of Bt. Current Microbiology, 76(11), 1379–1385.

Bandopadhyay, S. (2020). Application of plant growth promoting Bacillus thuringiensis as biofertilizer on Abelmoschus esculentus plants under field condition. Journal of Pure and Applied Microbiology, 14(2), 1287–1294.

Baxter, A. P., Van Der Westhuizen, G. C. A., & Eicker, A. (1983). Morphology and taxonomy of South African isolates of colletotrichum. South African Journal of Botany, 2(4), 259–289.

Chen, D., Wang, S., Yin, L., & Deng, X. (2018). How does silicon mediate plant water uptake and loss under water deficiency? Frontiers in Plant Science, 9, 340168.

Chitarra, W., Pagliarani, C., Maserti, B., Lumini, E., Siciliano, I., Cascone, P., Schubert, A., Gambino, G., Balestrini, R., & Guerrieri, E. (2016). Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiology, 171(2), 1009–1023.

de la Fuente-Salcido, N. M., Casados-Vázquez, L. E., García-Pérez, A. P., Barboza-Pérez, U. E., Bideshi, D. K., Salcedo-Hernández, R., García- Almendarez, B. E., & Barboza-Corona, J. E. (2016). The endochitinase ChiA Btt of Bacillus thuringiensis subsp. tenebrionis DSM-2803 and its potential use to control the phytopathogen Colletotrichum gloeosporioides. Microbiology Open, 5(5), 819–829.

Dey, M., & Ghosh, S. (2022). Arbuscular mycorrhizae in plant immunity and crop pathogen control. Rhizosphere, 22, 100524.

Dowarah, B., Gill, S. S., & Agarwala, N. (2022). Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. Journal of Plant Growth Regulation, 41(4), 1429–1444.

Dutta, R., Jayalakshmi, K., Nadig, S. M., Manjunathagowda, D. C., Gurav, V. S., & Singh, M. (2022). Anthracnose of onion (Allium cepa L.): A twister disease. Pathogens, 11(8), 884.

Ebenebe, A. C. (1980). Onion twister disease caused by Glomerella cingulata in Northern Nigeria. Plant Disease, 64, 1030–1032. Retrieved from

Etesami, H., & Jeong, B. R. (2018). Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicology and Environmental Safety, 147, 881–896.

Fiorilli, V., Catoni, M., Cardinale, F., & Lanfranco, L. (2011). The arbuscular mycorrhizal symbiosis reduces disease severity in tomato plants infected by Botrytis cinerea. Journal of Plant Pathology, 93(1), 237–242. Retrieved from

Fitriani, M. L., Wiyono, S., & Sinaga, M. S. (2020). Potensi kolonisasi mikoriza arbuskular dan cendawan endofit untuk pengendalian layu Fusarium pada bawang merah. Jurnal Fitopatologi Indonesia, 15(6), 228–238.

Galván, G. A., Wietsma, W. A., Putrasemedja, S., Permadi, A. H., & Kik, C. (1997). Screening for resistance to anthracnose (Colletotrichum gloeosporioides Penz.) in Allium cepa and its wild relatives. Euphytica 95(2), 173–178.

Genre, A., Lanfranco, L., Perotto, S., & Bonfante, P. (2020). Unique and common traits in mycorrhizal symbioses. Nature Reviews Microbiology, 18(11), 649–660.

Handini, Z., & Nawangsih, A. (2014). Keefektifan bakteri endofit dan bakteri perakaran pemacu pertumbuhan tanaman dalam menekan penyakit layu bakteri pada tomat. Jurnal Fitopatologi Indonesia, 10(2), 61–67.

Hekmawati, Poromarto, S. H., & Widono, S. (2020). Resistensi beberapa varietas bawang merah terhadap Colletotrichum gloeosporioides. Agrosains, 20(2), 40–44.

Hidayat, I. M., & Sulastrini, I. (2016). Screening for tolerance to anthracnose (Colletotrichum gloeosporioides) of shallot (Allium ascalonicum) genotypes. Acta Horticulturae, 1127, 89–95.

Ilmiah, H. H., Sulistyaningsih, E., & Joko, T. (2021). Fruit morphology, antioxidant activity, total phenolic and flavonoid contents of Salacca zalacca (Gaertner) Voss by applications of goat manures and Bacillus velezensis B-27. Caraka Tani: Journal of Sustainable Agriculture, 36(2), 270–282.

Janos, D. P. (1984). Methods for vesicular-arbuscular mycorrhiza research in the lowland wet tropics. Physiological Ecology of Plants of the Wet Tropics (pp. 173–187). Dordrecht: Springer.

Jayanti, R. M., & Joko, T. (2020). Plant growth promoting and antagonistic potential of endophytic bacteria isolated from melon in Indonesia. Plant Pathology Journal, 19(3), 200–210.

Joko, T., Hirata, H., & Tsuyumu, S. (2007). A sugar transporter (MfsX) is also required by Dickeya dadantii 3937 for in planta fitness. Journal of General Plant Pathology, 73(4), 274–280.

Jouzani, G. S., Valijanian, E., & Sharafi, R. (2017). Bacillus thuringiensis: A successful insecticide with new environmental features and tidings. Applied Microbiology and Biotechnology, 101(7), 2691–2711.

Korlina, E., Sulastrini, I., & Waluyo, N. (2021). Response of Trichoderma sp. and shallot varieties towards plant growth and disease incidence. IOP Conference Series: Earth and Environmental Science, 752(1), 012016.

Luyckx, M., Hausman, J. F., Lutts, S., & Guerriero, G. (2017). Silicon and plants: Current knowledge and technological perspectives. Frontiers in Plant Science, 8, 256009.

Marlitasari, E., Sulistyowati, L., & Rizkyta, R. (2016). Hubungan ketebalan lapisan epidermis daun terhadap infeksi jamur Alternaria porri penyebab penyakit bercak ungu pada empat varietas bawang merah. Jurnal HPT (Hama Penyakit Tumbuhan), 4(1), 8–16. Retrieved from

Nadeem, S. M., Khan, M. Y., Waqas, M. R., Binyamin, R., Akhtar, S., & Zahir, Z. A. (2017). Arbuscular mycorrhizas: An overview. Arbuscular Mycorrhizas and Stress Tolerance of Plants (pp. 1–24). Singapore: Springer.

Navitasari, L., Joko, T., Hari Murti, R., & Arwiyanto, T. (2020). Rhizobacterial community structure in grafted tomato plants infected by Ralstonia solanacearum. Biodiversitas, 21(10), 4888–4895.

Nega, A. (2014). Review on concepts in biological control of plant pathogens. Journal of Biology, Agriculture and Healthcare, 4(27), 33–54. Retrieved from

Öztopuz, Ö., Pekin, G., Park, R. D., & Eltem, R. (2018). Isolation and evaluation of new antagonist Bacillus strains for the control of pathogenic and mycotoxigenic fungi of fig orchards. Applied Biochemistry and Biotechnology, 186(3), 692–711.

Patil, S., Nargund, V. B., Hariprasad, K., Hegde, G., Lingaraju, S., & Benagi, V. I. (2018). Etiology of twister disease complex in onion. International Journal of Current Microbiology and Applied Sciences, 7(12), 3644–3657.

Pretty, J. (2008). Agricultural sustainability: Concepts, principles and evidence. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447–465.

Rahma, A. A., Suryanti, Somowiyarjo, S., & Joko, T. (2020). Induced disease resistance and promotion of shallot growth by Bacillus velezensis B-27. Pakistan Journal of Biological Sciences, 23(9), 1113–1121.

Rahman, M. M., Saidy, A. R., & Nisa, C. (2019). Aplikasi mikoriza arbuskula untuk meningkatkan serapan fosfat, pertumbuhan dan produksi tanaman bawang merah. EnviroScienteae, 15(1), 59–70.

Raut, L. S., Rakh, R. R., & Hamde, V. S. (2021). In vitro biocontrol scenarios of Bacillus amyloliquefaciens subsp. amyloliquefaciens strain rls19 in response to Alternaria macrospora, an Alternaria leaf spot phytopathogen of Bt cotton. Journal of Applied Biology and Biotechnology, 9(1), 75–82.

Reecha, J., Thiruvudainambi, S., Mareeswari, P., Oviya, R., & Vellaikumar, S. (2022). Morphological characterization of Colletotrichum gloeosporioides causing leaf twister blight disease in Allium cepa (onion). The Pharma Innovation Journal, 11(7), 26–30. Retrieved from

Safitri, Y. A., Hasanah, U., Salamiah, Samharinto, & Pramudi, M. I. (2019). Distribution of major diseases of shallot in South Kalimantan, Indonesia. Asian Journal of Agriculture, 3(2), 33–40.

Saldajeno, M. G. B., & Hyakumachi, M. (2011). The plant growth-promoting fungus Fusarium equiseti and the arbuscular mycorrhizal fungus Glomus mosseae stimulate plant growth and reduce severity of anthracnose and damping-off diseases in cucumber (Cucumis sativus) seedlings. Annals of Applied Biology, 159(1), 28–40.

Saleh, S., Anshary, A., Made, U., Mahfudz, & Basir-Cyio, M. (2021). Application of mycorrhizae and beauveria in organic farming system effectively control leafminers and enhance shallot production. Agrivita, 43(1), 79–88.

Sarianti, & Subandar, I. (2022). Insidensi dan severitas penyakit antraknosa pada tanaman bawang merah di Kampong Tanah Bara Kecamatan Gunung Aceh Singkil. Jurnal Pertanian Agros, 24(1), 202–210. Retrieved from

Setyawan, B., Berlian, I., & Prasetyo, N. E. (2016). Eksplorasi bakteri endofitik dan potensinya dalam penghambatan jamur akar putih (Rigidoporus microporus). Jurnal Penelitian Karet, 34(2), 175–188.

Shuab, R., Lone, R., Naidu, J., Sharma, V., Imtiyaz, S., & Koul, K. (2014). Benefits of inoculation of arbuscular mycorrhizal fungi on growth and development of onion (Allium cepa) plant. American-Eurasian Journal of Agriculture & Environmental Sciences, 14(6), 474011.

Simko, I., & Piepho, H. P. (2012). The area under the disease progress stairs: Calculation, advantage, and application. Phytopathology, 102(4), 381–389.

Smith, S. E., & Read, D. J. (2008). Mychorrizhal symbiosis (3rd ed.). Cambridge, USA: Academic Press.

Spagnoletti, F. N., Carmona, M., Balestrasse, K., Chiocchio, V., Giacometti, R., & Lavado, R. S. (2021). The arbuscular mycorrhizal fungus Rhizophagus intraradices reduces the root rot caused by Fusarium pseudograminearum in wheat. Rhizosphere, 19, 100369.

Spagnoletti, F. N., Cornero, M., Chiocchio, V., Lavado, R. S., & Roberts, I. N. (2020). Arbuscular mycorrhiza protects soybean plants against Macrophomina phaseolina even under nitrogen fertilization. European Journal of Plant Pathology, 156(3), 839–849.

Statistic Indonesia. (2023). Statistik Hortikultura 2022. Jakarta, Indonesia: Statistic Indonesia. Retrieved from

Subbanna, A. R. N. S., Chandrashekara, C., Stanley, J., Mishra, K. K., Mishra, P. K., & Pattanayak, A. (2019). Bio-efficacy of chitinolytic Bacillus thuringiensis isolates native to Northwestern Indian Himalayas and their synergistic toxicity with selected insecticides. Pesticide Biochemistry and Physiology, 158, 166–174.

Tran, C., Cock, I. E., Chen, X., & Feng, Y. (2022). Antimicrobial Bacillus: Metabolites and their mode of action. Antibiotics, 11(1), 88.

Wang, L. T., Lee, F. L., Tai, C. J., & Kasai, H. (2007). Comparison of gyrB gene sequences, 16S rRNA gene sequences and DNA-DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology, 57(8), 1846–1850.

Widyaningsih, S., Utami, S. N. H., Joko, T., & Subandiyah, S. (2019). Plant response and Huanglongbing disease development against heat treatments on ‘Siam Purworejo’ (Citrus nobilis (Lour)) and ‘Nambangan’ (C. maxima (Burm.) Merr.) under field condition. Archives of Phytopathology and Plant Protection, 52(3–4), 259–276.

Wisanggeni, G. A., Suryanti, S., & Joko, T. (2023). The potential of Bacillus subtilis subsp. subtilis RJ09 as a biological control agent against leaf spot diseases on clove. Jurnal Fitopatologi Indonesia, 19(3), 118–126.

Zargar, S. M., Mahajan, R., Bhat, J. A., Nazir, M., & Deshmukh, R. (2019). Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech, 9(3), 73.


  • There are currently no refbacks.