Identification of Morpho-Physiological and Yield Traits of Sweet Corn Hybrids at Various Shade Levels

Endah Dwi Susanti, Muhamad Achmad Chozin, Arya Widura Ritonga, Dwiwanti Sulistyowati

Abstract

The selection of shade-tolerant sweet corn under intercropping conditions is necessary to provide adaptive superior cultivars for agroforestry systems. Until recently, there have not been many reports of superior varieties of sweet corn tolerant to low light. This study aimed to determine the differences in the morphological, physiological and production responses of 25 hybrid sweet corn genotypes to low light intensity. This study used a nested design with three replications. The factors tested were the shade level (0%, 25%, 50% and 75%) and the genotype of hybrid corn. The results showed that most of the hybrid corn genotypes tested showed an increase in production at 25% shade, while at 50% and 75% shade, they showed a decrease in production. Based on relative production at 25% shade, the genotypes can be split into three groups: sensitive, moderate and tolerant. The tolerant genotype including F1 T8-2A x SM12-2 (G6); Exotic (G13); Talenta (G15); Golden boy (G16); F1 SM12-2 x T9-2 (G20) provided the highest increase in morpho-physiological characters and yields compared to the moderate and sensitive. In all genotype groups, morphological variables (number of leaves, leaf area, stem diameter and relative growth rate), physiological variables (stomata conductance, photosynthetic rate, and total dissolved solids (TDS)), and yield variables (length, diameter, number, weight and unhusked weight of ears) were significantly higher in the no-shade than in the shaded conditions. These findings can be used as a basis for sweet corn planting recommendations under shade condition areas such as in agroforestry systems.

Keywords

light; photosynthesis; shade tolerance; Zea mays saccharata Sturt

Full Text:

PDF

References

Addo-Quaye, A. A., Darkwa, A. A., & Ocloo, G. K. (2011). Growth analysis of component crops in a maize-soybean intercropping system as affected by time of planting and spatial arrangement. Journal of Agricultural and Biological Science, 6(6), 34–44. Retrieved from http://www.arpnjournals.com/jabs/research_papers/rp_2011/jabs_0611_282.pdf

Araki, T., Oo, T. T., & Kubota, F. (2014). Effects of shading on growth and photosynthetic potential of greengram (Vigna radiata (L.) Wilczek) cultivars. Environmental Control in Biology, 52(4), 227–231. https://doi.org/10.2525/ecb.52.227

Artru, S., Garré, S., Dupraz, C., Hiel, M. P., Blitz-Frayret, C., & Lassois, L. (2017). Impact of spatio-temporal shade dynamics on wheat growth and yield, perspectives for temperate agroforestry. European Journal of Agronomy, 82, 60–70. https://doi.org/10.1016/j.eja.2016.10.004

Baharuddin, R., Chozin, M. & Syukur, M. (2014). Toleransi 20 genotipe tanaman tomat terhadap naungan. Indonesian Journal of Agronomy, 42(2), 130–135. Retrieved from https://journal.ipb.ac.id/index.php/jurnalagronomi/article/view/8431

Bellasio, C., & Griffiths, H. (2014). Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. Journal of Experimental Botany, 65(13), 3725–3736. https://doi.org/10.1093/jxb/eru052

Bidhari, L. A., Effendi, R., Andayani, N. N., & Bambang, S. (2021). Screening of shade tolerant hybrid maize based on stress tolerance index. IOP Conference Series: Earth and Environmental Science, 911, 012018. https://doi.org/10.1088/1755-1315/911/1/012018

Borges, L. B., Maria, F. G., Luiz, F. B. da S. B., Maria, L. F. N., & Carlos, E. S. S. (2022). Maize intercropped between Eucalyptus urophylla in agroforestry systems in Brazil. African Journal of Agricultural Research, 18(6), 407–413. https://doi.org/10.5897/ajar2020.15229

Caron, B. O., Pinheiro, M. V. M., Korcelski, C., Schwerz, F., Felipe Elli, E., Sgarbossa, J., & Tibolla, L. B. (2019). Agroforestry systems and understory harvest management: The impact on growth and productivity of dual-purpose wheat. Anais Da Academia Brasileira de Ciencias, 91(4), e20180667. https://doi.org/10.1590/0001-3765201920180667

Chukwudi, U. P., Kutu, F. R., & Mavengahama, S. (2021). Influence of heat stress, variations in soil type, and soil amendment on the growth of three drought–tolerant maize varieties. Agronomy, 11(8), 1485. https://doi.org/10.3390/agronomy11081485

Cui, H., Camberato, J. J., Jin, L., & Zhang, J. (2015). Effects of shading on spike differentiation and grain yield formation of summer maize in the field. International Journal of Biometeorology, 59, 1189–1200. https://doi.org/10.1007/s00484-014-0930-5

Fan, Y., Chen, J., Wang, Z., Tan, T., Li, S., Li, J., Wang, B., Zhang, J., Cheng, Y., Wu, X., Yang, W., & Yang, F. (2019). Soybean (Glycine max L. Merr.) seedlings response to shading: Leaf structure, photosynthesis and proteomic analysis. BMC Plant Biology, 19, 34. https://doi.org/10.1186/s12870-019-1633-1

Fitrah, A. N., Carsono, N., & Ruswandi, D. (2022). Komparasi daya hasil dan toleransi genotipe jagung Padjadjaran pada naungan Eucalyptus sp. Kultivasi, 21(1), 1–14. https://doi.org/10.24198/kultivasi.v21i1.33452

Gao, J., Liu, Z., Zhao, B., Dong, S., Liu, P., & Zhang, J. (2020). Shade stress decreased maize grain yield, dry matter, and nitrogen accumulation. Agronomy Journal, 112(4), 2768–2776. https://doi.org/10.1002/agj2.20140

Gao, J., Shi, J., Dong, S., Liu, P., Zhao, B., & Zhang, J. (2017). Grain yield and root characteristics of summer maize (Zea mays L.) under shade stress conditions. Journal of Agronomy and Crop Science, 203(6), 562–573. https://doi.org/10.1111/jac.12210

Gao, J., Shi, J., Dong, S., Liu, P., Zhao, B., & Zhang, J. (2018). Grain development and endogenous hormones in summer maize (Zea mays L.) submitted to different light conditions. International Journal of Biometeorology, 62, 2131–2138. https://doi.org/10.1007/s00484-018-1613-4

Hu, L., Yu, J., Liao, W., Zhang, G., Xie, J., Lv, J., Xiao, X., Yang, B., Zhou, R., & Bu, R. (2015). Moderate ammonium: Nitrate alleviates low light intensity stress in mini Chinese cabbage seedling by regulating root architecture and photosynthesis. Scientia Horticulturae, 186, 143–153. https://doi.org/10.1016/j.scienta.2015.02.020

Khalid, M. H. B., Raza, M. A., Yu, H. Q., Sun, F. A., Zhang, Y. Y., Lu, F. Z., Si, L., Iqbal, N., Khan, I., Fu, F. L., & Li, W. C. (2019). Effect of shade treatments on morphology, photosynthetic and chlorophyll fluorescence characteristics of soybeans (Glycine max L. Merr.). Applied Ecology and Environmental Research, 17(2), 2551–2569. https://doi.org/10.15666/aeer/1702_25512569

Li, H., Jiang, D., Wollenweber, B., Dai, T., & Cao, W. (2010). Effects of shading on morphology, physiology and grain yield of winter wheat. European Journal of Agronomy, 33(4), 267–275. https://doi.org/10.1016/j.eja.2010.07.002

Liang, X. G., Gao, Z., Shen, S., Paul, M. J., Zhang, L., Zhao, X., Lin, S., Wu, G., Chen, X. M., & Zhou, S. L. (2020). Differential ear growth of two maize varieties to shading in the field environment: Effects on whole plant carbon allocation and sugar starvation response. Journal of Plant Physiology, 251, 153194. https://doi.org/10.1016/j.jplph.2020.153194

Masabni, J., Sun, Y., Niu, G., & Del Valle, P. (2016). Shade effect on growth and productivity of tomato and chili pepper. HortTechnology, 26(3), 344–350. https://doi.org/10.21273/horttech.26.3.344

Mereb, E. L., Alves, F. R. R., Rezende, M. H., Oliveira, E. J. De, Carvalho, R. F., & Melo, H. C. De. (2020). Morphophysiological responses of tomato phytochrome mutants under sun and shade conditions. Revista Brasileira de Botanica, 43, 45–54. https://doi.org/10.1007/s40415-020-00584-w

Muhidin, Syam’Un, E., Kaimuddin, Musa, Y., Sadimantara, G. R., Usman, Leomo, S., & Rakian, T. C. (2018). The effect of shade on chlorophyll and anthocyanin content of upland red rice. IOP Conference Series: Earth and Environmental Science, 122, 012030. https://doi.org/10.1088/1755-1315/122/1/012030

Nardini, C., Sgarbossa, J., Schwerz, F., Elli, E. F., Medeiros, S. L. P., & Caron, B. O. (2019). Growth and solar radiation use efficiency of corn cultivated in agroforestry systems. Emirates Journal of Food and Agriculture, 31(7), 535–543. https://doi.org/10.9755/ejfa.2019.v31.i7.1977

Nyaga, J., Muthuri, C. W., Barrios, E., Öborn, I., & Sinclair, F. L. (2017). Enhancing maize productivity in agroforestry systems through managing competition: Lessons from smallholders’ farms, Rift valley, Kenya. Agroforestry Systems, 93(2), 715–730. https://doi.org/10.1007/s10457-017-0169-3

Palm, C. A., Gachengo, C. N., Delve, R. J., Cadisch, G., & Giller, K. E. (2001). Organic inputs for soil fertility management in tropical agroecosystems: Application of an organic resource database. Agriculture, Ecosystems and Environment, 83(2), 27–42. https://doi.org/10.1016/S0167-8809(00)00267-X

Prayitno, G., Dinanti, D., Hidayana, I. I., & Nugraha, A. T. (2021). Place attachment and agricultural land conversion for sustainable agriculture in Indonesia. Heliyon, 7(7), e07546. https://doi.org/10.1016/j.heliyon.2021.e07546

Ramos-Fuentes, I. A., Elamri, Y., Cheviron, B., Dejean, C., Belaud, G., & Fumey, D. (2023). Effects of shade and deficit irrigation on maize growth and development in fixed and dynamic AgriVoltaic systems. Agricultural Water Management, 280, 108187. https://doi.org/10.1016/j.agwat.2023.108187

Ren, B., Yu, W., Liu, P., Zhao, B., & Zhang, J. (2022). Responses of photosynthetic characteristics and leaf senescence in summer maize to simultaneous stresses of waterlogging and shading. Crop Journal, 11(1), 269–277. https://doi.org/10.1016/j.cj.2022.06.003

Rondhi, M., Pratiwi, P. A., Handini, V. T., Sunartomo, A. F., & Budiman, S. A. (2018). Agricultural land conversion, land economic value, and sustainable agriculture: A case study in East Java, Indonesia. Land, 7(4), 148. https://doi.org/10.3390/land7040148

Sa’adah, F. L., Kusmiyati, F., & Anwar, S. (2022). Karakterisasi keragaman dan analisis kekerabatan berdasarkan sifat agronomi jagung berwarna (Zea mays L.). Jurnal Ilmiah Pertanian, 19(2), 126–136. https://doi.org/10.31849/jip.v19i2.9768

Salinas, G. H., Toledano-Toledano, F., Pérez-García, M., Sánchez-Valera, O. V., Ramírez-Rivera, E. de J., Serna-Lagunes, R., Rocandio-Rodríguez, M., Purroy-Vásquez, R., Fernández-López, C. L., López-Morales, F., & Garduño-Espinosa, J. (2022). Morpho-agronomic evaluation of native maize races associated with Mexican tropical climate agroforestry systems. PLoS ONE, 17(6), e0269896. https://doi.org/10.1371/journal.pone.0269896

Schwerz, F., Medeiros, S. L. P., Elli, E. F., Eloy, E., Sgarbossa, J., & Caron, B. O. (2018). Plant growth, radiation use efficiency and yield of sugarcane cultivate in agroforestry systems: An alternative for threatened ecosystems. Anais Da Academia Brasileira de Ciencias, 90(4), 3265–3283. https://doi.org/10.1590/0001-3765201820160806

Shi, Q., Kong, F., Zhang, H., Jiang, Y., Heng, S., Liang, R., Ma, L., Liu, J., Lu, X., Li, P., & Li, G. (2019). Molecular mechanisms governing shade responses in maize. Biochemical and Biophysical Research Communications, 516(1), 112–119. https://doi.org/10.1016/j.bbrc.2019.05.142

Shoukat, M. R., Jahan Leghari, S., Ahmad, N., Virk, A. L., Haider, F. U., Rehmani, M. I. A., & Laraib, I. (2022). Effects of foliar applied Thiourea on maize physiology, growth and yield (Zea mays L.) under shaded conditions. Journal of Plant Nutrition, 45(9), 1312–1321. https://doi.org/10.1080/01904167.2021.2014875

Siahaan, G. F., Chozin, M. A., Syukur, M., & Ritonga, A. W. (2022). Perbedaan respon pertumbuhan, fisiologi dan produksi 20 genotipe cabai rawit terhadap berbagai tingkat naungan. Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 50(1), 73–79. https://doi.org/10.24831/jai.v50i1.38832

Simiyu, W. D., Musyimi, D. M., Sikuku, P. A., & Odhiambo, D. G. (2021). Growth and gas exchange responses of maize and banana plants in an intercrop with agroforestry tree species in Vihiga County, Kenya. Asian Journal of Research in Crop Science, 6(3), 33–51. https://doi.org/10.9734/ajrcs/2021/v6i330119

Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81(3), 337–354. https://doi.org/10.1016/S0034-4257(02)00010-X

Smethurst, P. J., Huth, N. I., Masikati, P., Sileshi, G. W., Akinnifesi, F. K., Wilson, J., & Sinclair, F. (2017). Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry. Agricultural Systems, 155, 70–77. https://doi.org/10.1016/j.agsy.2017.04.008

Sofyan, E. T., Sara, D. S., & MacHfud, Y. (2019). The effect of organic and inorganic fertilizer applications on N, P-uptake, K-uptake and yield of sweet corn (Zea mays saccharata Sturt). IOP Conference Series: Earth and Environmental Science, 393, 012021. https://doi.org/10.1088/1755-1315/393/1/012021

Statistics Indonesia. (2020). Analysis of maize and soybean productivity in Indonesia 2020 (the result of crop cutting survey). Jakarta: Statistics Indonesia. Retrieved from https://www.bps.go.id/publication/2021/07/27/16e8f4b2ad77dd7de2e53ef2/analisis-produktivitas-jagung-dan-kedelai-di-indonesia-2020-hasil-survei-ubinan-.html

Sulistyowati, D., Chozin, M. A., Syukur, M., Melati, M., & Guntoro, D. (2016). Selection of shade-tolerant tomato genotypes. Journal of Applied Horticulture, 18(2), 154–159. https://doi.org/10.37855/jah.2016.v18i02.27

Surtinah, S., Susi, S., & Lestari, S. U. (2018). Komparasi tampilan dan hasil lima varietas jagung manis (Zea mays Saccharata Sturt) di Kota Pekanbaruu. Jurnal Ilmiah Pertanian, 13(1), 31–37. Retrieved from https://journal.unilak.ac.id/index.php/jip/article/view/974

Syukur, M., & Rifianto, A. (2013). Jagung manis. Jakarta: Penebar Swadaya. Retrieved from https://books.google.co.id/books?hl=id&lr=&id=SMy-CQAAQBAJ&oi=fnd&pg=PA1&dq=Jagung+Manis&ots=v2ZExkNAta&sig=6aWPaeaMDc1wXEp1Jl82hw8R-LQ&redir_esc=y#v=onepage&q=Jagung%20Manis&f=false

Waqas, M. A., Kaya, C., Riaz, A., Farooq, M., Nawaz, I., Wilkes, A., & Li, Y. (2019). Potential mechanisms of abiotic stress tolerance in crop plants induced by Thiourea. Frontiers in Plant Science, 10, 466752. https://doi.org/10.3389/fpls.2019.01336

Yuan, L., Zhang, H., Li, T., Zhang, L., Yuan, M., Liu, J., Cai, Z., Wang, H., Fu, J., Zhang, H., Zhang, Y., Zhu, S., Wu, W., & Yan, H. (2022). Shade stress on maize seedlings biomass production and photosynthetic traits. Ciencia Rural, 52(3), e20201022. https://doi.org/10.1590/0103-8478cr20201022

Zandalinas, S. I., Mittler, R., Balfagón, D., Arbona, V., & Gómez-Cadenas, A. (2018). Plant adaptations to the combination of drought and high temperatures. Physiologia Plantarum, 162(1), 2–12. https://doi.org/10.1111/ppl.12540

Zheng, B., Zhao, W., Ren, T., Zhang, X., Ning, T., Liu, P., & Li, G. (2022). Low light increases the abundance of light reaction proteins: Proteomics analysis of maize (Zea mays L.) grown at high planting density. International Journal of Molecular Sciences, 23(6), 3015. https://doi.org/10.3390/ijms23063015

Refbacks

  • There are currently no refbacks.