Effect of biochar on microbial population in heavy metal contaminated soil for 23 years

Sri Yusnaini, Erninda Octalyani, Suskandini Ratih Dirmawati, Abdul Kadir Salam, Iin Purwati Handayani

Abstract

Soil microbial populations and activities have been repeatedly reported to be severely affected by high concentrations of heavy metals. However, little of this information comes from tropical soil. The fungal and bacterial populations in tropical soils contaminated with heavy metals were observed in a laboratory study. Soils that have been amended once with different rates of heavy-metal-containing waste (0-60 Mg ha-1) in 1998 (23 years ago) were used in this study. We then treated the contaminated soils with different rates of biochar (0-10 Mg ha-1). Biochar is known to significantly reduce heavy metal contaminants through various immobilization reactions. The soil-biochar mixtures were allowed to equilibrate at the soil field water capacity, maintained by a common water reservoir beneath the soil-biochar mixtures, for 4 weeks. After this period, the soil fungal and bacterial populations were counted. The results of the present study showed that high soil levels of Cu and Zn significantly enhanced the fungal population. In contrast, the bacterial population was not affected by the presence of Cu and Zn. In the highly contaminated pots, the addition of biochar significantly enhanced the population of soil fungi (identified as Aspergillus sp.), but it did not affect the population of bacteria. The results of the study suggest that biochar application led to significant enhancement of the population of Aspergillus sp. in pots with high soil Cu and Zn levels, most likely through improved habitat conditions provided by biochar’s porous structure, which could be leveraged in bioremediation efforts for heavy metal-contaminated soils.

Keywords

Aspergillus sp.; Bacteria; Fungi; Metal Toxicity; Tropical Soils

Full Text:

PDF

References

Abdi, H., & Williams, L. J. (2010). Principal component analysis. WIREs Computational Statistics, 2(4), 433-459. https://doi.org/10.1002/wics.101

Adejoh, I. P. (2016). Assessment of heavy metal contamination of soil and cassava plants within the vicinity of a cement factory in north central, Nigeria. Advances in Applied Science Research, 7(3), 20-27. https://www.primescholars.com/abstract/assessment-of-heavy-metal-contamination-of-soil-and-cassava-plants-within-the-vicinity-of-a-cement-factory-in-north-cent-90357.html

Aksu, A. (2015). Sources of metal pollution in the urban atmosphere (A case study: Tuzla, Istanbul). Journal of Environmental Health Science and Engineering, 13(1), 79. https://doi.org/10.1186/s40201-015-0224-9

Anand, P., Isar, J., Saran, S., & Saxena, R. K. (2006). Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 97(8), 1018-1025. https://doi.org/10.1016/j.biortech.2005.04.046

Aprile, A., & De Bellis, L. (2020). Editorial for Special Issue “Heavy Metals Accumulation, Toxicity, and Detoxification in Plants”. International Journal of Molecular Sciences, 21(11), 4103. https://doi.org/10.3390/ijms21114103

Arif, N., Yadav, V., Singh, S., Singh, S., Ahmad, P., Mishra, R. K., . . . Chauhan, D. K. (2016). Influence of High and Low Levels of Plant-Beneficial Heavy Metal Ions on Plant Growth and Development [Mini Review]. Frontiers in Environmental Science, Volume 4 - 2016. https://doi.org/10.3389/fenvs.2016.00069

Arnebrant, K., Bååth, E., & Nordgren, A. (1987). Copper Tolerance of Microfungi Isolated from Polluted and Unpolluted Forest Soil. Mycologia, 79(6), 890-895. https://doi.org/10.1080/00275514.1987.12025478

Asati, A., Pichhode, M., & Nikhil, K. (2016). Effect of heavy metals on plants: an overview. International Journal of Application or Innovation in Engineering & Management, 5(3), 56-66. https://doi.org/10.13140/RG.2.2.27583.87204

Baquy, M. A.-A., Mamun, M. A. A., Mia, S., Alam, M. M., Khan, M. S. H., & Rahman, S. M. (2022). Biochar research advancement in Bangladesh: challenges and opportunities of biochar in improving soil health. Sains Tanah Journal of Soil Science and Agroclimatology, 19(2), 15. https://doi.org/10.20961/stjssa.v19i2.59758

Chen, D., Liu, X., Bian, R., Cheng, K., Zhang, X., Zheng, J., . . . Li, L. (2018). Effects of biochar on availability and plant uptake of heavy metals – A meta-analysis. Journal of Environmental Management, 222, 76-85. https://doi.org/10.1016/j.jenvman.2018.05.004

Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials, 146(1), 270-277. https://doi.org/10.1016/j.jhazmat.2006.12.017

Dietz, S., Herz, K., Gorzolka, K., Jandt, U., Bruelheide, H., & Scheel, D. (2020). Root exudate composition of grass and forb species in natural grasslands. Scientific Reports, 10(1), 10691. https://doi.org/10.1038/s41598-019-54309-5

Ebido, N. E., Edeh, I. G., Unagwu, B. O., Nnadi, A. L., Ozongwu, O. V., Obalum, S. E., & Igwe, C. A. (2021). Rice-husk biochar effects on organic carbon, aggregate stability and nitrogen-fertility of coarse-textured Ultisols evaluated using Celosia argentea growth. Sains Tanah Journal of Soil Science and Agroclimatology, 18(2), 11. https://doi.org/10.20961/stjssa.v18i2.56330

El-Maghrabi, H. H., & Mikhail, S. (2014). Removal of heavy metals via adsorption using natural clay material. Journal of Environment and Earth Science, 4(19), 38-46. https://www.iiste.org/Journals/index.php/JEES/article/view/16620

Febriansyah, M. R., Septiana, L. M., Supriatin, S., & Salam, A. K. (2021). The patterns of lead and copper levels in the vicinity of heavy metal sources in Lampung, the southern part of Sumatra, Indonesia. IOP Conference Series: Earth and Environmental Science, 739(1), 012001. https://doi.org/10.1088/1755-1315/739/1/012001

Gadd, G. M. (2016). 5 Fungi and Industrial Pollutants. In I. S. Druzhinina & C. P. Kubicek (Eds.), Environmental and Microbial Relationships (pp. 99-125). Springer International Publishing. https://doi.org/10.1007/978-3-319-29532-9_5

Gonzalez-Chavez, C., D'Haen, J., Vangronsveld, J., & Dodd, J. C. (2002). Copper sorption and accumulation by the extraradical mycelium of different Glomus spp. (arbuscular mycorrhizal fungi) isolated from the same polluted soil. Plant and Soil, 240(2), 287-297. https://doi.org/10.1023/A:1015794622592

Hayyat, A., Javed, M., Rasheed, I., Ali, S., Shahid, M. J., Rizwan, M., . . . Ali, Q. (2016). Role of Biochar in Remediating Heavy Metals in Soil. In A. A. Ansari, S. S. Gill, R. Gill, G. R. Lanza, & L. Newman (Eds.), Phytoremediation: Management of Environmental Contaminants, Volume 3 (pp. 421-437). Springer International Publishing. https://doi.org/10.1007/978-3-319-40148-5_14

Jamal, Q., Durani, P., Khan, K., Munir, S., Hussain, S., Munir, K., & Anees, M. (2013). Heavy metals accumulation and their toxic effects. Journal of Bio-Molecular Sciences (JBMS), 1(1-2), 27-36. https://www.researchgate.net/publication/276921553

Kelly, J. J., Häggblom, M. M., & Tate, R. L. (2003). Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of a zinc smelter as indicated by analysis of microbial community phospholipid fatty acid profiles. Biology and Fertility of Soils, 38(2), 65-71. https://doi.org/10.1007/s00374-003-0642-1

Khalisha, A., Widyastuti, R., & Chaniago, I. A. (2022). Use of phosphorus- and potassium-solubilizing multifunctional microbes to support maize growth and yield. Sains Tanah Journal of Soil Science and Agroclimatology, 19(1), 8. https://doi.org/10.20961/stjssa.v19i1.57816

Khodadad, C. L. M., Zimmerman, A. R., Green, S. J., Uthandi, S., & Foster, J. S. (2011). Taxa-specific changes in soil microbial community composition induced by pyrogenic carbon amendments. Soil Biology and Biochemistry, 43(2), 385-392. https://doi.org/10.1016/j.soilbio.2010.11.005

Khodijah, N. S., Suwignyo, R. A., Harun, M. U., & Robiartini, L. (2019). Phytoremediation potential of some grasses on lead heavy metal in tailing planting media of former tin mining. Biodiversitas Journal of Biological Diversity, 20(7). https://doi.org/10.13057/biodiv/d200725

Komkiene, J., & Baltrenaite, E. (2016). Biochar as adsorbent for removal of heavy metal ions [Cadmium(II), Copper(II), Lead(II), Zinc(II)] from aqueous phase. International Journal of Environmental Science and Technology, 13(2), 471-482. https://doi.org/10.1007/s13762-015-0873-3

Kozdrój, J. (1995). Microbial responses to single or successive soil contamination with Cd or Cu. Soil Biology and Biochemistry, 27(11), 1459-1465. https://doi.org/10.1016/0038-0717(95)00070-U

Kozdrój, J., & van Elsas, J. D. (2001). Structural diversity of microbial communities in arable soils of a heavily industrialised area determined by PCR-DGGE fingerprinting and FAME profiling. Applied Soil Ecology, 17(1), 31-42. https://doi.org/10.1016/S0929-1393(00)00130-X

Lahori, A. H., Mierzwa-Hersztek, M., Demiraj, E., Idir, R., Bui, T. T. X., Vu, D. D., . . . Zhang, Z. (2020). Clays, Limestone and Biochar Affect the Bioavailability and Geochemical Fractions of Cadmium and Zinc from Zn-Smelter Polluted Soils. Sustainability, 12(20), 8606. https://doi.org/10.3390/su12208606

Lekfeldt, J. D. S., Holm, P. E., Kjærgaard, C., & Magid, J. (2017). Heavy Metal Leaching as Affected by Long-Time Organic Waste Fertilizer Application. Journal of Environmental Quality, 46(4), 871-878. https://doi.org/10.2134/jeq2016.11.0458

Lu, H., Li, Z., Fu, S., Méndez, A., Gascó, G., & Paz-Ferreiro, J. (2015). Combining phytoextraction and biochar addition improves soil biochemical properties in a soil contaminated with Cd. Chemosphere, 119, 209-216. https://doi.org/10.1016/j.chemosphere.2014.06.024

Meena, A., & Rao, K. S. (2021). Assessment of soil microbial and enzyme activity in the rhizosphere zone under different land use/cover of a semiarid region, India. Ecological Processes, 10(1), 16. https://doi.org/10.1186/s13717-021-00288-3

Mwangi, L., & Lelei, D. (2023). Standard operating procedure: Method forisolation and enumeration of bacteria and fungi ratios. World Agroforestry Centre,. https://www.cifor-icraf.org/resources-documents/Method-for-Isolation-and-Enumeration-of-Bacteria-and-Fungi.pdf

Nie, C., Yang, X., Niazi, N. K., Xu, X., Wen, Y., Rinklebe, J., . . . Wang, H. (2018). Impact of sugarcane bagasse-derived biochar on heavy metal availability and microbial activity: A field study. Chemosphere, 200, 274-282. https://doi.org/10.1016/j.chemosphere.2018.02.134

Paneque, M., De la Rosa, J. M., Franco-Navarro, J. D., Colmenero-Flores, J. M., & Knicker, H. (2016). Effect of biochar amendment on morphology, productivity and water relations of sunflower plants under non-irrigation conditions. CATENA, 147, 280-287. https://doi.org/10.1016/j.catena.2016.07.037

Patra, J. M., Panda, S. S., & Dhal, N. K. (2020). Biochar as a low-cost adsorbent for heavy metal removal: A review. International Journal of Research in BioSciences (IJRBS), 6(1), 1-7. https://www.ijrbs.in/index.php/ijrbs/article/view/232

Pawlowska, T. E., & Charvat, I. (2004). Heavy-Metal Stress and Developmental Patterns of Arbuscular Mycorrhizal Fungi. Applied and Environmental Microbiology, 70(11), 6643-6649. https://doi.org/10.1128/AEM.70.11.6643-6649.2004

Pérez-de-Mora, A., Burgos, P., Madejón, E., Cabrera, F., Jaeckel, P., & Schloter, M. (2006). Microbial community structure and function in a soil contaminated by heavy metals: effects of plant growth and different amendments. Soil Biology and Biochemistry, 38(2), 327-341. https://doi.org/10.1016/j.soilbio.2005.05.010

Popova, E. (2016). Accumulation of heavy metals in the “soil-plant” system. AIP Conference Proceedings, 1772(1). https://doi.org/10.1063/1.4964576

Qu, Y., Tang, J., Li, Z., Zhou, Z., Wang, J., Wang, S., & Cao, Y. (2020). Soil Enzyme Activity and Microbial Metabolic Function Diversity in Soda Saline–Alkali Rice Paddy Fields of Northeast China. Sustainability, 12(23), 10095. https://doi.org/10.3390/su122310095

Ribeiro, I. D. A., Volpiano, C. G., Vargas, L. K., Granada, C. E., Lisboa, B. B., & Passaglia, L. M. P. (2020). Use of Mineral Weathering Bacteria to Enhance Nutrient Availability in Crops: A Review [Review]. Frontiers in Plant Science, Volume 11 - 2020. https://doi.org/10.3389/fpls.2020.590774

Salam, A. K. (2014). Enzymes in Tropical Soils (1st ed.). Global Madani Press. Bandar Lampung. Indonesia.

Salam, A. K. (2022). The Potential Roles of Biochar in Restoring Heavy-Metal-Polluted Tropical Soils and Plant Growth. In M. Bartoli, M. Giorcelli, & A. Tagliaferro (Eds.), Biochar - Productive Technologies, Properties and Applications. IntechOpen. https://doi.org/10.5772/intechopen.105791

Salam, A. K., & Ginanjar, K. (2018). Tropical Soil Labile Fractions of Copper in Experimental Plots±Ten Years after Application of Copper-Containing-Waste. Journal of Tropical Soils, 23(1), 11-18.

Salam, A. K., Hidayatullah, M. A., Supriatin, S., & Yusnaini, S. (2021). The phytoextraction of Cu and Zn by elephant grass (Pennisetum purpureum) from tropical soil 21 years after amendment with industrial waste containing heavy metals. IOP Conference Series: Earth and Environmental Science, 637(1), 012044. https://doi.org/10.1088/1755-1315/637/1/012044

Salam, A. K., Pakpahan, A. F., Susilowati, G., Fernando, N., Sriyani, N., Sarno, S., . . . Dermiyati, D. (2021). The Residual Copper and Zinc in Tropical Soil over 21 Years after Amendment with Heavy Metal Containing Waste, Lime, and Compost. Applied and Environmental Soil Science, 2021(1), 7596840. https://doi.org/10.1155/2021/7596840

Salam, A. K., Rizki, D. O., Santa, I. T. D., Supriatin, S., Septiana, L. M., Sarno, S., & Niswati, A. (2022). The biochar-improved growth-characteristics of corn (Zea mays L.) in a 22-years old heavy-metal contaminated tropical soil. IOP Conference Series: Earth and Environmental Science, 1034(1), 012045. https://doi.org/10.1088/1755-1315/1034/1/012045

Salam, A. K., & Sriyani, N. (2019). The Chemistry and Fertility of Soils under Tropical Weeds. In: Global Madani Press.

Selvi, A., Rajasekar, A., Theerthagiri, J., Ananthaselvam, A., Sathishkumar, K., Madhavan, J., & Rahman, P. K. S. M. (2019). Integrated Remediation Processes Toward Heavy Metal Removal/Recovery From Various Environments-A Review [Review]. Frontiers in Environmental Science, Volume 7 - 2019. https://doi.org/10.3389/fenvs.2019.00066

Setiawati, M. R., Afrilandha, N., Hindersah, R., Suryatmana, P., Fitriatin, B. N., & Kamaluddin, N. N. (2023). The effect of beneficial microorganism as biofertilizer application in hydroponic-grown tomato. Sains Tanah Journal of Soil Science and Agroclimatology, 20(1), 12. https://doi.org/10.20961/stjssa.v20i1.63877

Siddika, A., & Parveen, Z. (2022). Heavy Metal Remediation from Contaminated Soil Using Biochars and Modified Biochars: A Review. Indonesian Journal of Social and Environmental Issues (IJSEI), 3(1), 19-28. https://doi.org/10.47540/ijsei.v3i1.417

Silva, G., Aini, S. N., Buchari, H., & Salam, A. K. (2021). The phytoextraction of copper from tropical soil 21 years after amendment with heavy-metal containing waste. Journal of Tropical Soils, 26(1), 11-18. https://doi.org/10.5400/jts.2021.v26i1.11-18

Šmejkalová, M., Mikanová, O., & Borůvka, L. (2003). Effects of heavy metal concentrations on biological activity of soil micro-organisms [journal article]. Plant, Soil and Environment, 49(7), 321-326. https://doi.org/10.17221/4131-PSE

Sodango, T. H., Li, X., Sha, J., & Bao, Z. (2018). Review of the Spatial Distribution, Source and Extent of Heavy Metal Pollution of Soil in China: Impacts and Mitigation Approaches. Journal of Health and Pollution, 8(17), 53-70. https://doi.org/10.5696/2156-9614-8.17.53

Song, L., Hou, L., Zhang, Y., Li, Z., Wang, W., & Sun, Q. (2020). Regular Biochar and Bacteria-Inoculated Biochar Alter the Composition of the Microbial Community in the Soil of a Chinese Fir Plantation. Forests, 11(9), 951. https://doi.org/10.3390/f11090951

Sukartono, S., Kusumo, B. H., Suwardji, S., Bakti, A. A., Mahrup, M., Susilowati, L. E., & Fahrudin, F. (2022). Influence of biochar amendments on the soil quality indicators of sandy loam soils under cassava–peanut cropping sequence in the semi-arid tropics of Northern Lombok, Indonesia. Sains Tanah Journal of Soil Science and Agroclimatology, 19(2), 6. https://doi.org/10.20961/stjssa.v19i2.65452

Sun, L., Guo, D., Liu, K., Meng, H., Zheng, Y., Yuan, F., & Zhu, G. (2019). Levels, sources, and spatial distribution of heavy metals in soils from a typical coal industrial city of Tangshan, China. CATENA, 175, 101-109. https://doi.org/10.1016/j.catena.2018.12.014

Sun, X., Sun, M., Chao, Y., Shang, X., Wang, H., Pan, H., . . . Zhuge, Y. (2023). Effects of lead pollution on soil microbial community diversity and biomass and on invertase activity. Soil Ecology Letters, 5(1), 118-127. https://doi.org/10.1007/s42832-022-0134-6

Taraqqi-A-Kamal, A., Atkinson, J. C., Khan, A., Zhang, K., Sun, P., Akther, S., & Zhang, Y. (2021). Biochar remediation of soil: linking biochar production with function in heavy metal contaminated soils . Plant, Soil and Environment, 67(4), 183-201. https://doi.org/10.17221/544/2020-PSE

Timothy, N. a., & Williams, E. T. (2019). Environmental pollution by heavy metal: an overview. International Journal of Environmental Chemistry, 3(2), 72-82. https://www.sciencepublishinggroup.com/article/10.11648/j.ijec.20190302.14

Wang, S., Xu, Y., Norbu, N., & Wang, Z. (2018). Remediation of biochar on heavy metal polluted soils. IOP Conference Series: Earth and Environmental Science, 108(4), 042113. https://doi.org/10.1088/1755-1315/108/4/042113

Wang, Y., Wang, H.-S., Tang, C.-S., Gu, K., & Shi, B. (2022). Remediation of heavy-metal-contaminated soils by biochar: a review. Environmental Geotechnics, 9(3), 135-148. https://doi.org/10.1680/jenge.18.00091

Wei, M., Chen, J., Sun, Z., Lv, C., & Cai, W. (2015). Distribution of heavy metals in different size fractions of agricultural soils closer to mining area and its relationship to TOC and Eh. Proceedings of the World congress on new technologies, Barcelona, Spain. https://avestia.com/NewTech2015_Proceedings/files/papers/ICEPR200.pdf

Wu, L., Kobayashi, Y., Wasaki, J., & Koyama, H. (2018). Organic acid excretion from roots: a plant mechanism for enhancing phosphorus acquisition, enhancing aluminum tolerance, and recruiting beneficial rhizobacteria. Soil Science and Plant Nutrition, 64(6), 697-704. https://doi.org/10.1080/00380768.2018.1537093

Xiao, R., Huang, Z., Li, X., Chen, W., Deng, Y., & Han, C. (2017). Lime and Phosphate Amendment Can Significantly Reduce Uptake of Cd and Pb by Field-Grown Rice. Sustainability, 9(3), 430. https://doi.org/10.3390/su9030430

Xie, Y., Fan, J., Zhu, W., Amombo, E., Lou, Y., Chen, L., & Fu, J. (2016). Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation [Original Research]. Frontiers in Plant Science, Volume 7 - 2016. https://doi.org/10.3389/fpls.2016.00755

Yang, K., Zhang, T., Shao, Y., Tian, C., Cattle, S. R., Zhu, Y., & Song, J. (2018). Fractionation, Bioaccessibility, and Risk Assessment of Heavy Metals in the Soil of an Urban Recreational Area Amended with Composted Sewage Sludge. International Journal of Environmental Research and Public Health, 15(4), 613. https://doi.org/10.3390/ijerph15040613

Yang, Y., Yang, Z., Yu, S., & Chen, H. (2019). Organic Acids Exuded From Roots Increase the Available Potassium Content in the Rhizosphere Soil: A Rhizobag Experiment in Nicotiana tabacum. HortScience, 54(1), 23-27. https://doi.org/10.21273/hortsci13569-18

Yunus, K., Zuraidah, M., & John, A. (2020). A review on the accumulation of heavy metals in coastal sediment of Peninsular Malaysia. Ecofeminism and Climate Change, 1(1), 21-35. https://doi.org/10.1108/EFCC-03-2020-0003

Zhang, D., Li, T., Wu, X., & Wang, Y. (2021). Effect of amendments (lime–zeolite–biochar) on the immobilization of Cd and Pb in a contaminated acidic soil. IOP Conference Series: Earth and Environmental Science, 742(1), 012016. https://doi.org/10.1088/1755-1315/742/1/012016

Refbacks

  • There are currently no refbacks.