Remediation of amoxicillin-contaminated water using zeolite from coal bottom ash

Galuh Yuliani, Nedya Tresna Dwi Hidayah, Maryono Maryono, Budiman Anwar, Mamun Mollah, Jessica Veronica, Agus Setiabudi

Abstract

The contamination of antibiotics in water bodies has increased significantly in recent years. Various treatments, including adsorption, have been sought, but most include expensive sorbent material with low efficiency. This research reported an alternative sorbent material; synthetic zeolite derived from coal-burning waste. Coal bottom ash was converted to zeolite via a hydrothermal technique using various concentrations of NaOH and relatively low-temperature conditions. X-ray diffractogram confirms the formation of ZSM-23 when a 1:2 coal-to-zeolite ratio was used at 95°C. The FTIR spectra also highlighted the characteristics of zeolite functional groups, such as the Si−O vibration at 999.56 cm-1 and the Al−O vibration at 799.48 cm-1. The needle-like morphology of ZSM-23 was observed during SEM-EDS analysis. When calculated using BET analysis, the synthetic zeolite also exhibited a high surface area of 433.517 m2 g-1. Upon application in a batch experiment, the maximum adsorption capacity of the zeolite for amoxicillin (AMX) adsorption in aqueous solution was found to be 673.5 mg g-1. The adsorption data fitted the Langmuir isotherm better than the Freundlich one, with a correlation factor of 0.9328. This suggested the monolayer interaction, possibly between the negatively charged zeolite surface and the NH3+ group from AMX. However, the physical adsorption mechanism with the zeolite surface may also occur due to the high surface area. Considering the low production cost, this zeolite offers high economic value as an alternative sorbent for removing antibiotics in water effluent.

Full Text:

PDF

References

ACS Material. (n.d.). Technical Data Sheet: ACS Material ZSM-23. Retrieved August 15, 2022 from https://www.acsmaterial.com/zsm-23.html

Ali, M. A., & Maafa, I. M. (2024). Photodegradation of Amoxicillin in Aqueous Systems: A Review. International Journal of Molecular Sciences, 25(17), 9575. https://doi.org/10.3390/ijms25179575.

Almeida, J. N., Song, L., Askarli, S., Chung, S.-H., & Ruiz-Martínez, J. (2025). Zeolite–Water Chemistry: Characterization Methods to Unveil Zeolite Structure. Chemistry–Methods, 5(4), e202400076. https://doi.org/10.1002/cmtd.202400076.

Argiz, C., Sanjuán, M. Á., & Menéndez, E. (2017). Coal Bottom Ash for Portland Cement Production. Advances in Materials Science and Engineering, 2017(1), 6068286. https://doi.org/10.1155/2017/6068286.

Arnelli, A., Fathoni, B. Y., Prastyo, T. I., Suseno, A., & Astuti, Y. (2018). Synthesis of Zeolite from Bagasse and Rice Husk Ashes as Surfactant Builder on Detergency Process: Variation of NaOH Concentration for Silica Isolation [zeolite, surfactant builder, detergency, rice husk, ash bagasse]. 2018, 21(3), 5. https://doi.org/10.14710/jksa.21.3.139-143.

Asgar Pour, Z., Alassmy, Y. A., & Sebakhy, K. O. (2023). A Survey on Zeolite Synthesis and the Crystallization Process: Mechanism of Nucleation and Growth Steps. Crystals, 13(6), 959. https://doi.org/10.3390/cryst13060959.

Balarak, D., Mostafapour, F. K., Akbari, H., & Joghtaei, A. (2017). Adsorption of Amoxicillin Antibiotic from Pharmaceutical Wastewater by Activated Carbon Prepared from Azolla filiculoides. Journal of Pharmaceutical Research International, 18(3), 1-13. https://doi.org/10.9734/JPRI/2017/35607.

Batista, A. D., A. Rodrigues, D., Figueiras, A., Zapata-Cachafeiro, M., Roque, F., & Herdeiro, M. T. (2020). Antibiotic Dispensation without a Prescription Worldwide: A Systematic Review. Antibiotics, 9(11), 786. https://doi.org/10.3390/antibiotics9110786.

Bhargava, A., Arivu, P., Chandera, N., & Govani, J. (2018). An overview of waste management in Indian perspective. Global Journal of Energy and Environment, 6(3), 158-161.

Boycheva, S., Zgureva, D., Lazarova, H., & Popova, M. (2021). Comparative studies of carbon capture onto coal fly ash zeolites Na-X and Na–Ca-X. Chemosphere, 271, 129505. https://doi.org/10.1016/j.chemosphere.2020.129505.

Butyrskaya, E. (2024). Understanding the mechanism of monolayer adsorption from isotherm. Adsorption, 30(6), 1395-1406. https://doi.org/10.1007/s10450-024-00512-4.

Chen, X., Xi, H., Chen, C., Ma, Z., & Hou, B. (2020). Synthesis of ZSM-23 Zeolite by Two-Stage Temperature-Varied Crystallization and Its Isomerization Performance. Applied Sciences, 10(21), 7546. https://doi.org/10.3390/app10217546.

Chen, Y., Li, C., Wang, L., Zhang, M., & Liang, C. (2017). Seed-assisted synthesis of ZSM-23 zeolites in the absence of alkali metal ions. Microporous and Mesoporous Materials, 252, 146-153. https://doi.org/10.1016/j.micromeso.2017.06.013.

Chwastowski, J., Guzik, M., Bednarz, S., & Staroń, P. (2023). Upcycling Waste Streams from a Biorefinery Process—A Case Study on Cadmium and Lead Biosorption by Two Types of Biopolymer Post-Extraction Biomass. Molecules, 28(17), 6345. https://doi.org/10.3390/molecules28176345.

Gollakota, A. R. K., Munagapati, V. S., Volli, V., Gautam, S., Wen, J.-C., & Shu, C.-M. (2021). Coal bottom ash derived zeolite (SSZ-13) for the sorption of synthetic anion Alizarin Red S (ARS) dye. Journal of Hazardous Materials, 416, 125925. https://doi.org/10.1016/j.jhazmat.2021.125925.

Jafari, K., Heidari, M., & Rahmanian, O. (2018). Wastewater treatment for Amoxicillin removal using magnetic adsorbent synthesized by ultrasound process. Ultrasonics Sonochemistry, 45, 248-256. https://doi.org/10.1016/j.ultsonch.2018.03.018.

Jiang, N., Erdős, M., Moultos, O. A., Shang, R., Vlugt, T. J. H., Heijman, S. G. J., & Rietveld, L. C. (2020). The adsorption mechanisms of organic micropollutants on high-silica zeolites causing S-shaped adsorption isotherms: An experimental and Monte Carlo simulation study. Chemical Engineering Journal, 389, 123968. https://doi.org/10.1016/j.cej.2019.123968.

Jiang, N., Shang, R., Heijman, S. G. J., & Rietveld, L. C. (2018). High-silica zeolites for adsorption of organic micro-pollutants in water treatment: A review. Water Research, 144, 145-161. https://doi.org/10.1016/j.watres.2018.07.017.

Kalinkin, A. M., Gurevich, B. I., Myshenkov, M. S., Chislov, M. V., Kalinkina, E. V., Zvereva, I. A., . . . Petkova, V. (2020). Synthesis of Fly Ash-Based Geopolymers: Effect of Calcite Addition and Mechanical Activation. Minerals, 10(9), 827. https://doi.org/10.3390/min10090827.

Kecili, R., & Hussain, C. M. (2018). Chapter 4 - Mechanism of Adsorption on Nanomaterials. In C. M. Hussain (Ed.), Nanomaterials in Chromatography (pp. 89-115). Elsevier. https://doi.org/10.1016/B978-0-12-812792-6.00004-2

Larsson, D. G. J., & Flach, C.-F. (2022). Antibiotic resistance in the environment. Nature Reviews Microbiology, 20(5), 257-269. https://doi.org/10.1038/s41579-021-00649-x.

Lin, Y.-J., & Chen, J.-C. (2021). Resourcization and valorization of waste incineration fly ash for the synthesis of zeolite and applications. Journal of Environmental Chemical Engineering, 9(6), 106549. https://doi.org/10.1016/j.jece.2021.106549.

Liu, H. (2022). Conversion of Harmful Fly Ash Residue to Zeolites: Innovative Processes Focusing on Maximum Activation, Extraction, and Utilization of Aluminosilicate. ACS Omega, 7(23), 20347-20356. https://doi.org/10.1021/acsomega.2c02388.

Luo, Y., Wu, Y., Ma, S., Zheng, S., Zhang, Y., & Chu, P. K. (2021). Utilization of coal fly ash in China: a mini-review on challenges and future directions. Environmental Science and Pollution Research, 28(15), 18727-18740. https://doi.org/10.1007/s11356-020-08864-4.

Makgabutlane, B., Nthunya, L. N., Nxumalo, E. N., Musyoka, N. M., & Mhlanga, S. D. (2020). Microwave Irradiation-Assisted Synthesis of Zeolites from Coal Fly Ash: An Optimization Study for a Sustainable and Efficient Production Process. ACS Omega, 5(39), 25000-25008. https://doi.org/10.1021/acsomega.0c00931.

Mokgehle, T. M., Gitari, W. M., & Tavengwa, N. T. (2020). Synthesis and characterization of zeolites produced by ultrasonication of coal fly Ash/NaOH slurry filtrates. South African Journal of Chemistry, 73(1), 64–69-64–69. https://doi.org/10.17159/0379-4350/2020/v73a10

Nowak, P., Muir, B., Solińska, A., Franus, M., & Bajda, T. (2021). Synthesis and Characterization of Zeolites Produced from Low-Quality Coal Fly Ash and Wet Flue Gas Desulphurization Wastewater. Materials, 14(6), 1558. https://doi.org/10.3390/ma14061558.

Radovanovic, M., Day, R. O., Jones, G. D. R., Galettis, P., & Norris, R. L. G. (2022). LC–MS/MS method for simultaneous quantification of ten antibiotics in human plasma for routine therapeutic drug monitoring. Journal of Mass Spectrometry and Advances in the Clinical Lab, 26, 48-59. https://doi.org/10.1016/j.jmsacl.2022.11.001.

Ray, S. S., Gusain, R., & Kumar, N. (2020). Chapter four - Adsorption in the context of water purification. In S. S. Ray, R. Gusain, & N. Kumar (Eds.), Carbon Nanomaterial-Based Adsorbents for Water Purification (pp. 67-100). Elsevier. https://doi.org/10.1016/B978-0-12-821959-1.00004-0

Renu, Agarwal, M., & Singh, K. (2017). Methodologies for removal of heavy metal ions from wastewater: an overview. Interdisciplinary Environmental Review, 18(2), 124-142. https://doi.org/10.1504/IER.2017.087915.

Samandari, M., Movahedian Attar, H., Ebrahimpour, K., & Mohammadi, F. (2022). Monitoring of Amoxicillin and Cephalexin Antibiotics in Municipal WWTPs During Covid-19 Outbreak: A Case Study in Isfahan, Iran. Air, Soil and Water Research, 15, 11786221221103879. https://doi.org/10.1177/11786221221103879.

Schroeder, C., Zones, S. I., Hansen, M. R., & Koller, H. (2022). Hydrogen Bonds Dominate Brønsted Acid Sites in Zeolite SSZ-42: A Classification of Their Diversity. Angewandte Chemie International Edition, 61(3), e202109313. https://doi.org/10.1002/anie.202109313.

Su, Q., Wei, X., Yang, G., Ou, Z., Zhou, Z., Huang, R., & Shi, C. (2023). In-situ conversion of geopolymer into novel floral magnetic sodalite microspheres for efficient removal of Cd(II) from water. Journal of Hazardous Materials, 453, 131363. https://doi.org/10.1016/j.jhazmat.2023.131363.

Touloumet, Q., Postole, G., Massin, L., Lorentz, C., & Auroux, A. (2023). Investigation of the impact of zeolite shaping and salt deposition on the characteristics and performance of composite thermochemical heat storage systems [10.1039/D2TA07615B]. Journal of Materials Chemistry A, 11(6), 2737-2753. https://doi.org/10.1039/D2TA07615B.

Travkina, O. S., Serebrennikov, D. V., Kuvatova, R. Z., Khazipova, A. N., Filippova, N. A., Agliullin, M. R., & Kutepov, B. I. (2024). The Synthesis of Granular ZSM-23 Zeolite with a High Degree of Crystallinity and a Micro-Meso-Macroporous Structure, and Its Use in the Hydroisomerization of n-Hexadecane. Nanomaterials, 14(23), 1897. https://doi.org/10.3390/nano14231897.

Tumrani, S. H., Soomro, R. A., Zhang, X., Bhutto, D. A., Bux, N., & Ji, X. (2021). Coal fly ash driven zeolites for the adsorptive removal of the ceftazidime drug [10.1039/D1RA02785A]. RSC Advances, 11(42), 26110-26119. https://doi.org/10.1039/D1RA02785A.

Uvarkina, D. D., Piryutko, L. V., Danilova, I. G., Budukva, S. V., Klimov, O. V., Kharitonov, A. S., & Noskov, A. S. (2015). Effect of boron on acid and catalytic properties of Pd-ZSM-23/Al2O3 catalysts in the reaction of diesel fuel hydroisomerization. Russian Journal of Applied Chemistry, 88(11), 1827-1838. https://doi.org/10.1134/S10704272150110142.

Yadav, V. K., Choudhary, N., Tirth, V., Kalasariya, H., Gnanamoorthy, G., Algahtani, A., . . . Jeon, B.-H. (2021). A Short Review on the Utilization of Incense Sticks Ash as an Emerging and Overlooked Material for the Synthesis of Zeolites. Crystals, 11(10), 1255. https://doi.org/10.3390/cryst11101255.

Yossadania, A., Hayati, Z., Harapan, H., Saputra, I., Diah, M., & Ramadhana, I. F. (2023). Quantity of antibiotic use and its association with clinical outcomes in COVID-19 patients: A snapshot from a provincial referral hospital in Indonesia. Narra J, 3(3), e272. https://doi.org/10.52225/narra.v3i3.272.

Zainal Abidin, A., Abu Bakar, N. H. H., Ng, E. P., & Tan, W. L. (2017). Rapid Degradation of Methyl Orange by Ag Doped Zeolite X in the Presence of Borohydride. Journal of Taibah University for Science, 11(6), 1070-1079. https://doi.org/10.1016/j.jtusci.2017.06.004.

Zhang, W., Wan, J., Cui, W., Liu, L., Cao, L., Shen, G., & Hu, S. (2019). Adsorption dynamics and mechanism of Amoxicillin and Sulfachlorpyridazine by ZrOx/porous carbon nanocomposites. Journal of the Taiwan Institute of Chemical Engineers, 104, 65-74. https://doi.org/10.1016/j.jtice.2019.08.009.

Refbacks

  • There are currently no refbacks.